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1 Introduction

SRI International (SRI) has carried out a three-year project to develop spoken-
language understanding technology for interactive problem solving, featuring real-
time performance, large vocabulary, high semantic accuracy, habitability, and robust-
ness. This technology has been developed using an Air Travel Information System
(ATIS) as a prototype application. We have developed technology that enables a
user to retrieve airline schedules, fares, and related information by means of spoken
natural-language queries. We have evaluated this technology in four ATIS benchmark
evaluations, and we have incorporated it into a demonstration system, which we have
also used for data collection.

This final report consists of a summary of the research and other activities car-
ried out under the project, followed by an Appendix containing 26 technical papers
describing work performed on the project. The report covers work on speech recogni-
tion, natural-language understanding, speech and natural-language integration, data
collection and analysis, performance evaluation, demonstration systems, and related
activities.

2 Speech Recognition

SRI's continuous speech, speaker-independent DECIPHER* speech recognizer is based
on tied-mixture hidden Markov models. It uses six cepstra- and energy-based features
generated from a filterbank computed via fast Fourier transforms and high-pass filter-
ing in the log-spectral-energy domain. Pronunciation variability is modeled through
probabilistically pruned linguistic rules. Cross-word acoustic and phonological mod-
els are used. Recognizers trained separately on male and female speech are run in
parallel, and a backed-off bigram language model is used to reduce perplexity.

SRI's speech recognition effort over the course of the project has involved several
tasks: improving speech recognition accuracy, improving speech recognition speed,
improving speech recognition robustness, and improving speech recognition portabil-
ity. Each of these tasks is described briefly below.

2.1 Improving Speech Recognition Accuracy

We have investigated several lines of research that have led to improvements in speech
recognition accuracy. Increasing the amount of training usually leads to improved
performance, both by providing more training of existing models and by allowing for
robust estimation of more detailed models with more parameters. Other techniques

"All product names and trademarks used in this document are the properties of their respective
owners.
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that have led to improvements include corrective training algorithms, separate model-
ing of male and female speakers, implementation of tied-mixture ("semi-continuous")
hidden Markov models, algorithms for combining and differentially weighting differ-
ent sources of training data for bigram and class language models, and an improved
back-off estimation algorithm (Cohen et al., 1990; Murveit, Weintraub, anc Cohen,
1990; Murveit, Butzberger, and Weintraub, 1991; Butzberger et al., 1992; Murveit,
Butzberger, and Weintraub, 19)2a).

2.2 Improving Speech Recognition Speed

We have achieved significant speed gains in our recognition training algorithms by
implementing server-client protocols for hidden-Markov-model training distributed
over several machines; these improvements reduced training times by an order of
magnitude. In addition, through software engineering, we have achieved high-speci
static grammar compilation for higher-order N-gram language models. The new
techniques implemented have reduced the size of the grammars, which means that
the DECIPHEB system runs more quickly and requires less memory. In addition, we
have implemen-ted fast-search recognition algorithms for near-real-time recognition of
large vocabularies. Finally, we have recoded our front-end to achieve computation
speeds about twice faster than real time.

2.3 Improving Speech Recognition Robustness

Our analysis of errors in benchmark tests revealed that much of the discrepancy
between ARPA Resource Management task results and ATIS task results was re-
lated to spontaneous speech phenomena not observed in the Resource Management
data. Therefore, much of our effort on this project has been focused on modeling
these spontaneous speech phenomena, including more appropriate word modeling
and better models of breath noise and pause fillers (Butzberger et al., 1992; Murveit,
Butzberger, and Weintraub, 1992a). Modeling of verbal repairs is reviewed later in
Section 4.2 under the topic of integration, since it involves both speech and natural
language.

We have also improved DECIPHER's robustness to time-invariant or slow-moving
linear channel effects by implementing RASTA filtering (high-pass filtering in the
log spectral domain) to improve channel robustness. We have demonstrated the
effectiveness of this type of filtering in a set of experiments involving speech passed
through a digital filter, two radically different microphones, and digit recognition over
the telephone (Murveit, Butzberger, and Weintraub, 1992b).
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2.4 Improving Speech Recognition Portability

We have explored several aspects of the issue of portability, including porting to new
vocabularies, to new languiage models, and to new platforms. We have tested these
components by porting the ATIS system to the new, 46-city ATIS database, and,
in a coordinated internally funded effort, porting to an online version of the system
connected to the Official Airline Guide Electronic Edition.

We began work in the area of portability by developing mechanisms for the auto-
matic generation of baseforms, applications of rules and the creation of word-models
based on existing training data from other domains. We have also developed tech-
niques for porting more easily to new vocabularies by modeling morphophonological
correspondences.

Since different tasks and platforms may require different language models, we have
written several software tools to manipulate and convert grammars of different formats
into a single format for use by the recognition system. A variety of grammars (e.g.,
back-off N-gram, word-pair, all-word, and finite-state) are supported in the recognizer
in a uniform and consistent framework. The mechanism allows for searching parallel
recognition paths that contain separate male and female acoustic-phonetic models; it
also supports dynamic grammars and N-best search algorithms.

Since porting to different platforms can require changes in the allowable system
size, we have explored clustering techniques that allow larger tasks to fit on a smaller
machine, and also allow for more detailed models without computational explosion.
Since porting to many applications will not allow for additional hardware, we have
implemented a system (in conjunction with support from other related projects) that
iieeds only a SUN workstation and an analog-to-digital converter, with no digital-
signal-processing board required.

3 Natural-Language Understanding

Under this project, SRI's research on natural-language understanding for spoken-
larguage systems has proceeded along two lines. The shorter-term line of research
has focused on the Template Matcher, a module that constructs database queries by
searching the user input for key words and phrases characteristic of the most common
query types for a given task, ignoring parts of the input that it does not understand.
This approach is robust to many kinds of nonstandard use of language, standard
language that is simply unanticipated, and speech recognition errors in noncritical
parts of the utterance. It is limited, however, in its ability to extract information
that depends on structural relationships among words and phrases. A longer-term
effort is focused on more sophisticated syntactic and semantic analysis of the input,
using a unification-grammar-based natural-language processing system called Gemini.
This system is capable of analyzing more complex semantic relationships than the
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Template Matcher, but is more fragile, by itself, to unanticipated variation in query
phrasing. These two approaches to natural-language understanding are described
below, along with our current and planned methods for integrating them.

3.1 The Template Matcher

The Template Matcher (Jackson et al., 1991) operates by filling templates from infor-
mation it finds in the input utterance. Templates represent skeletal database qjeries
for common types of requests in a particular database query task. For the ATIS
task, the topics for which query templates have been defined include flights, fares,
ground transportation, the meanings of codes and headings, aircraft, cities, airlines,
and airports. Each template has a set of key words and phrases that tend to signal
the corresponding type of query and a set of slots that the Template Matcher fills
using words and phrases found in the input. For example, for the flight template, the
keywords include flight, fly, and go, and the word from followed by an airport or city
name will cause the "origin" slot to be filled with that name.

For each template, a score is computed that is roughly the percentage of words in
the sentence that contribute in some way to matching or filling the template. If the
utterance fails to contain any of the keywords that normally signal the template, this
basic score is reduced by a factor that varies from template to template. For each
input utterance, the Template Matcher tries to fill each kind of template, and the
one with the best score is used to construct the database query, provided its score
is greater than a certain "cut-off" parameter. The selected filled template is then
translated into a database query.

3.2 Gemini

Gemini (Dowding et al., 1993a, 1993b) is a parsing and semantic interpretation system
based on unification grammar. This means that grammatical categories incorporate
features that can be assigned values, and when grammatical category expressions are
matched in the course of parsing or semantic interpretation, these feature assignments
are unified; that is, the resulting category expression is the most general expression
consistent with all the feature constraints of the expressions being matched.

Processing starts in Gemini when syntactic, semantic, and lexical rules are applied
by a bottom-up all-paths "constituent" parser to populate a chart with edges contain-
ing syntactic, semantic, and logical form information. Then, a second "utterance"
parser is used to apply a second set of syntactic and semantic rules that are required
to span the entire utterance. If no semantically acceptable utterance-spanning edges
are found during this phase, a component to recognize and correct verbal repairs is
applied. When an acceptable interpretation is found, a set of parse preferences is
used to choose a single best interpretation from the chart to be used for subsequent
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processing. Quantifier scoping rules are applied to this best interpretation to pro-
duce a scoped logical form. This logical form is operated on by a set of task-specific
rules that map it into a simplified logical form that closely matches the schema of
the database. Finally, a module similar to that used to process the output of the
Template Matcher translates simplified logical forms into database queries.

In a fair test on the class A amid D utterances in the November 1992 ATIS bench-
mark test set, Gemini was able to find a complete syntactic analysis for 93.1 percent
of the utterances and a complete semantic analysis for 86.0 percent of the utterances.

3.3 Integration of the Template Matcher and Gemini
The fact that Gemini attempts a more complete analysis of an utterance than the
Template Matcher does suggests that the Template Matcher will succeed more often
than Gemini in finding some interpretation for an utterance, but that when Gemini
does find an interpretation, it is more likely to be correct than the Template Matcher.
Our experiments with ATIS training data have in fact demonstrated this to be the
case. To get the benefits of both approaches, the ATIS system we currently use in
benchmark evaluations incorporates both Gemini and the Template Matcher, by first
attempting to construct a complete analysis of a query using Gemini, and falling back
on the Template Matcher if that fails. That way Gemini gets a chance to give an exact
analysis of the input before the Template Matcher attempts an approximate one. The
approach proved successful in the November 1992 ATIS NL benchmark test (Pallet
et al., 1993), where a system based on the Template Matcher alone had a weighted
error of 27.6 percent, while the combination of Gemini with the Template Matcher
had a weighted error of only 23.6 percent. The difference was even greater for the
"class A" (context-independent) subset of queries, where the system incorporating
Gemini had a weighted error of only 14.8 percent, compared to 22.2 percent for the
Template Matcher alone.

Under the follow-on project, we intend to undertake a more thorough integration
of template matching techniques directly into Gemini. To achieve this integration,
we will modify the Gemini utterance-level parser to allow it to skip words in the
input and assign a corresponding score to the analysis. Since the utterance gram-
mar in Gemini already incorporates rules for semantically combining a sequence of
fragments, we expect this will largely subsume the functionality of the Template
Matcher with minimal changes to Gemini. Moreover, the performance of the system
should be increased, since the general phrase types that can be combined in this way
should cover cases that are not covered by the more specific patterns the Template
Matcher currently relies on. The Gemini constituent parser (Moore and Dowding,
1991) has been designed in anticipation of this type of processing, incorporating a
novel algorithm that finds all complete grammatical phrases bottom up while using
limited prediction from context to control creation of spuriously hypothesized phrases
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containing unlicensed syntactic gaps.

4 Speech and Natural-Language Integration

Work on integration of speech and language processing under this project has focused
on two problems introduced by spontaneous speech that are not present in analysis
of fluent textual natural language: (1) coping with errors in the transcription of the
speech caused by imperfect recognition, and (2) coping with disfluencies present even
in a perfect transcription caused by speakers' verbal repairs in spontaneous speech.
Our results in these areas are discussed below.

4.1 Dealing with Recognition Errors

Our research has addressed the problem of understanding natural language containing
recognition errors in two ways. For the near term, we have taken advantage of the
robustness of the Template Matcher to accommodate recognition errors. Since the
Template Matcher can ignore much of the input utterance, recognition errors in these
noncritical parts of the utterance typically do not create errors in understanding.
The effect of this robustness to recognition errors can be seen in the November 1992

ATIS benchmark tests (Pallet et al., 1993). In the speech recognition test, SRI's
DECIPHER recognizer had a sentence error rate of 33.8 percent for the answerable
queries, but in the spoken language system (SLS) test, SRI's ATIS system failed to
return the correct answer from the database for only 21.6 percent of these utterances.
Viewed this way, the (nonweighted) understanding error rate was only 64 percent of
the recognition error rate.

Despite this robustness to recognition error, SRI's SLS ATIS system still had a 41
percent higher error rate than the same natural-language understanding system did
when tested with error-free transcriptions of utterances. Thus %,. have also pursued a

longer-term line of research to try to use constraints from natural language to reduce
the rate of rccognition errors with the goal of improving the overall rate of correct
understanding.

In experiments reported in 1990 (Murveit and Moore, 1990), we demonstrated

the use of a natural-language grammar to reduce the rate of speech recognition errors
in the ARPA Resource Management task. In these experiments we were abie to
reduce the recognition word error rate by 26 percent by including constraints from
a natural-language grammar, for sentences falling within the grammar. The base
recognition system was a speaker-dependent version of SRI's DECIPHER recognizer
using no grammar (perplexity 1000); the natural-language grammar was a syntactic
grammar covering 91 percent of the Resource Management corpus; and the test set
consisted of 279 sentences covered by the grammar out of 300 sentences divided evenly
among three speakers. The integration architecture used was the dynamic grammar
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network approach (Moore, Pereira, and Murveit, 1989), in which the natural-language
parser incremeil a y generates a grammar-state-transition network that limits the
word sequev,- .ypotheses considered by the recognizer to those permitted by the
grammar

"While these experiments were a success, the fact that the possible recognition
hypotheses were restricted to those word sequences permitted by the grammar turned
out to be a serious limitation. When we turned to the problem of recognizing and
understanding spontaneous speech in the ATIS task (in contrast to the read. carefully
formed sentences of the Resource Management task), it became apparent that there
was very little prospect of writing a grammar that would cover all, or nearly all. of
what people would actually say spontaneously to a spoken-language system. A more
robust method for applying natural-language constraints in recognition was clearly
required. Under this project, we have begun exploring the use of the Gemini system
to guide the recognizer to favor more semantically meaningful recognition hypotheses
in a way that maintains robustness by making use of information provided by Gemini
even when the system fails to obtain a complete semantic analysis.

Our new approach is based on the obscrvation that, even when the grammar fails
to find a complete analysis of an utterance, it is usually able to find a small number of
phrases that span the utterance. This suggests using the natural-language grammar to
compute a language model score for a word sequence hypothesis based on the minimal
number of grammatical phrases needed to span the hypothesis. The language model
score can be computed as the number of phrases times a parameter optimized to
maximize overall performance. The overall scoring formula for recognition hypotheses
is then

S= R+aG,

where R is the score produced by the recognizer (which can incorporate an N-gram
statistical language model), G is the grammar score (the minimal number of gram-
matical phrases needed to span the hypothesis), and a is the parameter to scale the
grammar score appropriately to combine with the recognition score. This parame-
ter can be looked on as a "phrase-transition weight" parallel to the "word-transition
weight" often used in recognizers to minimize insertion errors.

We have carried out an initial experiment using this model, and the result appears
very encouraging. To simplify running this experiment, we used an N-best integration
of DECIPHER with SRI's Gemini natural-language processing system. For 100 ATIS
training sentences, DECIPHER produced an ordered list of the 20 best-scoring word
string hypotheses, using both acoustic models and a bigram language model. Where
the top 20 word string hypotheses did not contain the reference string, we added
it at the bottom of the list. (This was done to overcome the limitation of the N-
best approach that N may have to be very large to avoid pruning errors. Other
architectures that we are exploring do not suffer from this problem.) We then scored
each hypothesis by the smallest number of phrases needed to cover the hypothesis,
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using Gemini's syntactic and semantic rules.
When we compared the scores produced by Gemini for the 1-best hypothesis and

for the reference string, we found that in 53 cases Gemini gave them the same score
(in 27 of these cases the 1-best hypothesis was the reference string), in 44 Gemini
gave the reference string a higher score, and in only three cases did Gemini rank
an incorrect 1-best hypothesis higher than the reference string. So, in the cases
where applying natural-language constraints made a difference, Gemini was almost
15 times more likely to prefer the reference string over an incorrect 1-best hypothesis.
Next we looked at what would happen to recognition accuracy if we combined the
DECIPHER recognition score with the Gemini language score as we have proposed.
We discovered that, for this limited experiment, optimal results were obtained by
letting the Gemini score completely dominate the recognition score. That is, optimal
results were obtained by limiting consideration to the set of hypotheses given the
best score by Gemini, and selecting the hypothesis scored best by DECIPHER from
among those. (This would surely not have been the case if significantly more than 20
or 21 hypotheses per utterance had been used.) By doing this, we were able to reduce
the total number of recognition errors for the test set from 148 to 116, a reduction of
22 percent, compared with using the DECIPHER recognizer alone.

In comparing these results to our earlier experiments with dynamic grammar
networks, it is important to realize that in those experiments we artificially restricted
the test set to utterances whose reference transcription could be completely analyzed
by the grammar. In the more recent experiments, we made no such restriction, and
25 percent of the test set consisted of utterances for which Gemini could not provide
complete analyses at the time the test was performed. So we were, in fact, able to
demonstrate the robustness to limitations of the grammar that we were seeking.

4.2 Detecting and Correcting Verbal Repairs

During the past two years, we have investigated the problem of correcting repairs in
spontaneous speech. In this type of grammatical disfluency, the speaker intends that
the correct interpretation of his or her utterance be gotten by ignoring one or more
words or word fragments.

How many American airline flights leave Denver on June June tenth.

C'an you give me information on all the flights from San Fr- no from
Pittsburgh to San Francisco on Monday.

In this effort, we have developed a notation for describing and annotating repairs
(Bear et al., 1993). We have analyzed the repairs occurring in a 10,000 utterance
training set of ATIS data, and have developed preliminary methods to recognize and
correct repairs combining string matching, acoustic, and natural-language information
sources (Bear, Dowding, and Shriberg, 1992; Shriberg, Bear, and Dowding, 1992). In

8



addition, we have incorporated a component based on those methods into the Gernini
system (Dowding ot al., 1993a, 1993b).

The mechanism used in Gemini to detect and correct repairs is currently applied
as a fallback if no semantically acceptable interpretation is found for the complete
utterance. The mechanism finds sequences of identical or related words, possibly
separated by a cue word (for example, oh or no) that might indicate the presence of
a repair, and deletes the first occurrence of the matching portion. Since there may be
several such sequences of possible repairs in the utterance, the mechanism produces
a ranked set of candidate corrected utterances. These candidates are ranked in order
of the fewest deleted words. The first candidate that can be given an interpretation
is accepted as the intended meaning of the utterance.

The repair correction component currently used in Gemini does not make use of
acoustic/prosodic information, but it is clear that acoustics can contribute meaningful
cues to repair. In future work, we hope to improve the performance of our repair cor-
rection component by incorporating acoustic/prosodic techniques for repair detection
developed at SRI (Bear, Dowding, and Shriberg, 1992; Shriberg, Bear, and Dowding,
1992) and elsewhere (Nakatani and Hirschberg, 1993; O'Shaughnessy, 1992).

While it is true that repairs occur relatively rarely in our training data (only three
percent of utterances, when simple word fragments are excluded), their rate of occur-
rence can be expected to increase as speakers become more comfortable talking with
a computer. Rates of repair for human-human communication have been reported as
high as 34 percent (Levelt '983) for descriptions of visual patterns.

5 Data Collection and Analysis

Early in the project SRI produced a functional equivalent of the data-collection en-
vironment for the ATIS task developed by Texas Instruments (TI), and used it to
collect and process data from 10 subjects using the TI protocols. We found in ex-
periments based on variations in this system that more constrained scenarios should
be used, that familiarization sessions should be used, and that subjects can adapt to
small vocabularies (which has important implications for scaling the technologies to
various platforms) (Bly et al., 1990).

Through our participation in the MADCOW multi-site ATIS data collection ef-
fort (MADCOW, 1992; Hirschman et al., 1993), we have collected training and test
data (speech, transcriptions, and logfiles) using SRI's ATIS system, including over
100 speakers, cver 200 scenarios, and over 3000 utterances for the 11-city version of
the ATIS relational database. We have also collected over 500 utterances in the new
46-city version of the ATIS database. In addition, we have collected data from 16
speakers (32 scenarios, 508 utterances) using two systems: SRI's DECIPHER recog-
nizer hooked up to MIT's TINA NL, and the standard SRI data collection system.
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Each speaker solved one scenario using each system, so that user behavior and satis-
faction could be compared.

We have carric 1 out extensive analyses of human-machilr problem solving using
the SRI ATIS system. We have analyzed user satisfaction a~i system performance as
a function of system errors, user experience, and instructions to users, and exp!ored
trade-offs of speed vs. accuracy (Shriberg, Wade, and Price, 1992). Our work has
shown evidence that, in the face of system word error rates above about 20 percent.
users will tend to adapt their speech style (as well as their language) to reduce the
error rate (Wade, Shriberg, and Price, 1992).

6 Performance Evaluation

SRI has participated in every ARPA spoken-language benchmark evaluation con-
ducted during the course of the project. Our progress in natural-language under-
standing, spoken-language understanding, and speech recognition as measured by the
ATIS benchmark tests is presented in Table 1. The "Nb" results measure natural-
language understanding performance in terms of the response error for retrieving the
correct answer from the ATIS database, given a correct word-level transcription of
the subject's utterance. The "SLS" results measure spoken-language understanding
performance starting from the acoustic signal. Both of these are measured in terms
of weighted utterance error percentage, according to which a wrong answer is counted
as twice as bad as not answering at all. The "SPREC" results measure speech recog-
nition performance in terms of word error percentage. "Class A" refers to the subset
of utterances that were judged to be answerable queries whose interpretation did not
depend on the context of utterance. "Class A+D" refers to all answerable queries,
whether or not context is required for their interpretation. "Class A+D+X" refers
to all utterances, whether or not they constitute answerable queries. As can be seen
from the table, our peformance has steadily improved on all measures over the course
of the project.

This project also supported the early stages of SRI's work on the ARPA CSR
large-vocabulary speech recognition task. In the first benchmark evaluation on that
task, we achieved a 16.6 percent word error rate in the verbalized punctuation test
and a 17.1 percent word error rate in the non-verbalized-punctuation test (standard
bigran anguage model, speaker-independent, closed 5000-word vocabulary).

In addition to evaluating systems in the benchmark tests, SRI has played a leading
role in defining and supporting technology evaluation within the ARPA community. It
was SRI that proposed and promoted the ATIS task as a common task for evaluation
of spoken-language understanding systems. Patti Price's role in the MADCOW effort
has had a major impact on the functioning of the benchmark evaluations. In addition,
she has directed efforts in assessing our current benchmarks and searching for new
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Test performed June 90 Feb 91 Feb 92 Nov 92
NL class A 77.8 31.0 22.9 14.8
NL class A+D 31.1 23.6
SLS class A 41.4 32.1 26.5
SLS class A+D 45.4 33.2
SPREC class A 18.0 7.3 5.2
SPREC class A+D 8.4 5.7
SPREC class A+D+X 11.0 9.1

Table 1: SRI error rates in ATIS benchmark tests.

evaluation procedures, developing with MIT a method for end-to-end evaluation that
takes into account the whole interaction (Price et al., 1992). Robert Moore has played
a major role on the Corpora and Performance Evaluation Committee (CPEC-the
predecessor of MADCOW) and the Principles of Interpretation Committee. He also
chaired the original ATIS query classification working group and the ATIS relational
database working group. In the latter capacity he redesigned the ATIS relational
database schema, and supervised other SRI staff in revising the 11-city ATIS database
to conform to the new schema. He also developed the minimal/maximal scoring
criterion for controlling the inclusion of irrelevant information in database answers.
Finally, George Doddington chaired the CSR corpus committee, supported in part by
this project, until he took a leave oi absence from SRI to become program manager
at ARPA.

7 Demonstration Systems

SRI has been a leader in demonstrating spoken-language understanding technology,
and has achieved several firsts in this area. We believe that SRI was the first site to
develop and demonstrate an ATIS SLS system; this system had a 350-word vocabulary
and was a near-real-time, speaker-dependent system, using a grammar of perplexity
15-90, depending on how close the sentences used were to the 2900 sentence training
set. We also developed a graphical user interface for this system, which was first
demonstrated in August of 1990. Later we developed a new, X-based interface to
the SLS ATIS system, which allowed demonstrations to be given from any machine
running X-windows.

Our next step in demonstration system development was to improve accuracy for
speaker-independent recognition while maintaining the real-time speed requirement.
We believe that we were the first to use our SLS for data collection with no wizard
in the loop (May 1991). Our next step was to make the system portable, which
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we achieved through algorithm improvement (reduction in size requirements). We
implemented this system on a laptop Sun workstation, and believe we were the first
to demonstrate our SLS off-site, at Carnegie Mellon University in October 1991.

We made further improvements in the user interface of our ATIS system, includ-
ing better paraphrasing of system's understanding, easier to read displays, better
handling of system error messages, and simpler control of context mechanism. In
addition, we added visual interest by including digitized graphics and improved user
friendliness by including a tape-recorder like interface to allow tile user to move
through background material. This interface was integrated with 2 other demonstra-
tions (telephone banking and W/all Street Journal dictation) and delivered to ARPA.
This last effort was coordinated with the Real-Time Hardware project and internal
funding.

8 Related Activities

In addition to the work in support of performance evaluation described in Section 6,
SRI has played a major role, with support from this project, in committee and other
work ancillary to the administration of the ARPA Spoken Language Program:

"* Patti Price, Robert Moore, and George Doddington have served on the Spoken
Language Coordinating Committee.

" Patti Price has served on the Standing Committee for planning ARPA Speech
and Natural Language (now Human Language Technology) workshops, includ-
ing chairing this committee from February, 1992, through March, 1993, and
developing a set of documented procedures and guidelines for this series of
workshops in the form of a "constitution" for the workshops.

"• Patti Price has served on numerous workshop planning committees, including
those for June 1990, February 1991 (which she chaired), February 1992, and
March 1993.

In connection with these activities, the project has supported the participation of
SRI staff in the following ARPA-related administrative meetings:

* Patti Price attended an ATIS development meeting at Texas Instruments in
Dallas, Texas, just before the 1990 ICASSP meeting. In addition, she attended
the ARPA workshop planning meeting in Washington, DC.

* Patti Price attended an Spoken Language Coordinating Committee meeting in
July 1990 in Boston, Massachusetts.

* Patti Price and Robert Moore hosted the Spoken Language Coordinating Com-
mittee meeting November 1990.
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e SRI hosted the Fourth ARPA Workshop on Speech and Natural Language,
Asilomar Conference Center, 19-22 February 1991, followed by an open-house
with demonstrations of SRI's technology. Patti Price chaired the workshop and
edited the proceedings.

* Robert Moore hosted an Spoken Language Coordinating Committee meeting
immediately following the Asilomar Workshop.

* Robert Moore represented SRI at the CPEC meeting in Cambridge, Mas-
sachusetts, in March 1991 and was joined by Patti Price at the Spoken Language
Coordinating Committee meeting 19-20 March 1991.

@ Robert Moore and Patti Price attended the Spoken Language Coordinating
Committee held at AT&T Bell Laboratories, Murray Hill, New Jersey, in July
1991.

* Doug Appelt, Robert Moore, Hy Murveit, and Patti Price attended the Spoken
Language Coordinating Committee meeting in Pittsburgh, Pennsylvania, in
October 1991.

* Robert Moore, Hy Murveit, and George Doddington attended the Spoken Lan-
guage Coordinating Committee meeting at the National Institute of Standards
and Technology, Gaithersburg, Maryland, in March, 1992.

a Robert Moore and George Doddington attended the Spoken Language Coordi-
nating Committee meeting in August 1992, at BBN Systems and Technologies,
Cambridge, Massachusetts.

* Patti Price attended and chaired a meeting of the Standing Committee on
ARPA workshops in Speech and Natural Language, 10 September 1992 at SAIC
in Washington, DC.

This project has also supported the participation of SRI staff members in many
important technical and professional meetings:

* ARPA-sponsored Speech and Natural Language Workshops in June 1990, Febru-
ary 1991, and February 1992, the ARPA Spoken Language Technology Work-
shop in January 1993, and the ARPA Human Language Technology Workshop
in March 1993 were all attended by several SRI participants under support of
this project. The papers presented at these workshops reporting work on the
project are listed in the References section of this report.

a Jared Bernstein, Michael Cohen, Hy Murveit, Patti Price and Mitch Weintraub
attended the 1990 International Conference on Acoustics, Speech, and Signal
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Processing in Albuquerque, New Mexico. partially supported by this project.
Two papers reporting work on the project, by Murveit and Moore (1990) and
Cohen et al. (1990), were presented.

" Robert Moore and John Bear attended the 28th Annual Meeting of the Associ-
ation for Computational Linguistics in Pittsburgh, Pennsylvania, in June 1990.
John Bear presented a paper at this meeting based on joint work with Patti
Price that was partially supported by this project (Bear and Price, 1990).

" A paper was prepared, supported by this project, for presentation at the Kobe
ICSLP in November 1990, describing SRI's SLS integration and development
(Price et al., 1990).

" John Butzberger attended the International Conference on Acoustics, Speech,
and Signal Processing in Toronto, Canada, in May 1991.

" Robert Moore and John Dowding attended the 29th Annual Meeting of the
Association for Computational Linguistics in Berkeley, California, in June 1991.

" Patti Price attended the International Congress of Phonetic Sciences in Aix-en-
Provence in August 1991. She also made several laboratory visits: University of
Eindhoven/Phillips Research Center (a laboratory focused on intonation anal-
ysis), Cap Gemini R and D in Paris (a group responsible for system integration
and multilanguage porting in the SUNDIAL project of the European ESPRIT
program), and CNET-Lannion (a group doing extensive recognition applica-
tions, and responsible for dialogue evaluation).

" Hy Murveit attended the IEEE workshop on Speech Recognition at Arden House
in December 1991. Dr. Murveit brought a demonstration of SRI's ATIS spoken-
language system to Arden House, and spoke in a panel session on Spoken Lan-
guage Systems describing SRI's efforts and the overall ARPA Spoken Language
Program.

" Patti Price served on the Technical Committee for an NSF workshop on Spoken-
Language Understanding in February 1992, at which she led a working group
on spoken-language understanding.

" Mark Gawron attended the Second Conference on Semantics and Linguistic
Theory in Columbus, Ohio, in May 1992, and presented a paper on compara-
tives.

" John Bear and John Dowding attended the 30th Annual Meeting of the Associ-
ation for Computational Linguistics in June 1992 at the University of Delaware.
They presented a paper, co-authored with Elizabeth Shriberg, on verbal repairs.
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a Patti Price attended and delivered an invited talk at a workshop on "Inte-
grating Speech and Natural Language," sponsored by the European Network
of Excellence in Language and Speech (ELSNET) and the European Speech
Communication Association (ESCA), held in Dublin, July 15-17, 1992.
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Appendix: Papers Written on the Project

This appendix consists of 26 technical papers that describe work performed on the
project. Full bibliographic details for these papers may be found in the References
section of this report.
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SRI INTERNATIONAL RESULTS
FEBRUARY 1992 ATIS BENCHMARK TEST

Douglas E. Appelt, Eric Jackson

SRI International
Menlo Park, CA 94025

ABSTRACT from a filter bank that is derived via an FFT and high-
We describe the results that SRI International achieved on pass filtered (RASTA filtered) in the log-spectral-energy
the February 1992 ATIS Speech and Natural Language Sys- domain. DECIPHER models pronunciation variability
tern Test. The basic architecture of the system is described, through word networks generated by linguistic rules then
including a set of parameters capable of altering the system's pruned probabilistically. There are cross-word acoustic
behavior and processing strategy. We report on several ex- and phonological models. Parallel recognizers were im-
periments that were run on the February test set to evaluate plemented and trained separately on male and female
several processing strategies for both natural-language only speech. The DECIPHER-ATIS system uses a backed-off
and full spoken-language system tests. bigram language model to reduce the perplexity of the

input speech.

1. INTRODUCTION
This paper reports on the results of ruhning SRI In- The acoustic models were trained on all available ATIS

ternational's spoken-language system on the DARPA- spontaneous and read data (excluding 809 sentences used
spaon'soredF ebruaryn1992aest.The system 's nhatural- for system development that include 362 October 1991
sponsored February 1992 test. The system's natural- dry run sentences and 447 MADCOW sentences). Thc
language processing has been parameterized in several backed-off bigram language model was trained on the
ways to achieve different behaviors. In addition to run- available ATIS spontaneous speech data. This included
ning our system with what we believed at the time of the 14,779 sentences (approximately 150,000 words). The
test to be the optimal parameter settings to produce our recognition lexicon consisted of all words spoken in all

official results, we have conducted some experiments by available spontaneous ATIS data. There are also lexi-

running the system with a variety of parameter settings. cal entries for breaths and silence. No catch-all rejection

The results of these experiments shed some light on the model was used for out-of-vocabulary items. The vocab-

trade-offs among various SLS and natural-language pro- ulary size is 1385 words.

cessing strategies, and provide some interesting data for

evaluating the evaluation methodology itself. The TRAVELOGUE System

2. SYSTEM DESCRIPTION The TRAVELOGUE system consists of a template-

The SLS system used for the February evaluation is an matching sentence-analysis mechanism [3] coupled with
integration of the SRI DECIPHER speech recognition a context-handling mechanism and a database query
[1,4,5] system with the SRI TRAVELOGUE natural- generation component.
language processing system. The integration between
these two systems is currently accomplished by a sim- the te pla tem ce operates g templates
pie serial interface: the best accoustic hypothesis is pro- frombthe nuentence whin get tran tedncessed by the NL system to produce the answer to the database queries. The two main components of a temn-
query. plate are the template type, which generally correspondsto a relation in the underlying database, and a set of

The DECIPHER System filled slots, which represent constraints present in the
query. A template for the sentence "Show me the non-

DECIPHER is a speaker-independent continuous-speech stop flights from Boston" might be of the type "flight"
speech recognition system based on tied-mixture Hid- and have an origin slot filled with "Boston" and a stops
den Markov Model (HMM) models. It uses six features, slot filled with "0." In addition to these components,
three being vectors (cepstra, delta-cepstra, and delta- a template contains an illocutionary force marker (e.g.,
delta-cepstra) and three scalars (energy, delta-energy, "show," "how many," "yes/no"), and a list of explicitly
and delta-delta-energy). These features are computed requested fields from the relation associated with the
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template type. There are 20 different template types proach.
and 110 distinct slots.

The template matcher was developed on all the anno-
The template matcher determines the type of template tated MADCOW data available as of January 1, 1992.
by looking for certain key nouns or key phrases in the In addition, a 3,000-sentence subset of the MADCOW
sentence. It incorporates a simple noun phrase grammar data was annotated with the correct template for each
that allows it to identify phrases containing key nouns. utterance. The template production of the system could
The presence of a key noun in certain contexts (e.g., in a be quickly evaluated on these sentences. As of January
noun phrase preceded by a word like "show") will more 1992, the system's performance on this corpus was above
strongly trigger the associated template type than an 90%.
isolated occurrence of that, key noun. Conjunctions of
noun phrases containing key nouns produce templates When a template is produced, the context-handling

with multiple template types. mechanism of TRAVELOGUE is invoked to determine
whether the template for the current sentence should be

Slots are filled by matching regular-expression patterns modified or expanded based on the current state of the
against the input string. For example, "from" followed dialogue. The system employs a variety of context han-
by an airport or city name may fill the origin slot of dling rules, each of which is justified by a plan-based
the flight template. To find fillers for slots, the template model of dialogue structure similar to that of Grosz and
matcher makes use of a lexicon of names and codes, each Sidner [2]. The basic model tracks the context of a di-
associated with the appropriate sort, and special gram- alogue by assuming the user is following a plan that in-
mars for recognizing numbers, dates, and times. For volves knowing which database entities satisfy a set of
each template type with some key noun or key phrase constraints that he or she has in mind when the session
present in the sentence, the system tries to find the best commences, because the user has the goal of formulat-
"slot covering" of the sentence it can. That is, it tries to ing a travel plan (as opposed to other purposes for which
find the sequence of slot-filling patterns that matches the such a database would be useful).
sentence and consumes as many words as possible. Two
constraints are (1) slot filling phrases may not overlap, The context mechanism inherits constraints expressed

and (2) no slot may be filled twice with different val- by previous queries in a scenario as long as accumulating

ues. The system incorporates a schematic mapping of these constraints is consistent with knowing a single set

the domain, which contains the information as to how of constraints applicable to a single travel plan. Knowing

entities are related, and allows the system to determine whether this set of constraints is consistent with the over-

what slots are possible for each template. all plan is accomplished by comparing the new slots to a
context priority-lattice that establishes a partial order of

In the next stage, the system chooses a single template dependencies among various template slots. Changes in
from the set of candidate templates that have been con- higher-level constraints cause lower-level constraints to
structed. It chooses on the basis of several factors, in- be discarded. This general mechanism is supplemented
cluding the type of key that triggered the template and with a mechanism for handling deictic references and
the number of words consumed in filling slots. A tem- references to particular database entities that have ap-
plate score is then computed for the chosen template, peared in answers to previous questions.
reflecting the proportion of words in the sentence that
are considered to be consumed. Words that fill slots When a template including contextually inherited slots is

or help slots get filled count, as well as function words produced, the TRAVELOGUE produces, optimizes, and

and certain other words (such as "please") that are ig- runs a PROLOG database query, generating the final

nored for the purposes of scoring. If the template does answer.

not score above a threshold, the system chooses not to
risk answering the query. The threshold can be varied 3. OFFICIAL RESULTS
depending on how much risk of a wrong answer can be In the February 1992 DARPA ATIS benchmark tests,
tolerated. For evaluation we have found a threshold of SRI achieved the following results: In the ATIS speech
about 0.85 to be optimal, while for data collection we recognition evaluation, SRI achieved a word recogni-
use a lower threshold, typically 0.5. tion error rate of 11.0% and a sentence recognition er-

The template matcher incorporates special mechanisms ror rate of 48.7% over all sentences on the test corpus.The empate atcer icororaes secil mehansms In the ATIS natural-language-only test, SRI achieved a

to handle certain types of false starts and complex con- I ghe erro ra l- I 31.1%, wi t , SRI achiev ed

junctions. These phenomo-na cannot be handled well in weighted error rate of 31.1%, with 533 queries answered
auntraightfons rd Thsehnomena , ant bemplandte- matc ing correctly, 60 incorrectly, and 94 given no answer. In the
a straightforward, unaugmented, template-matching ap- ATIS spoken-language systems evaluation, SRI achieved
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a weighted error rate of 45.4%, with 444 queries answered correctness of the accumulated contextual information,
correctly, 69 incorrectly, and 174 queries given no an- that it should, for evaluation purposes, stop answering
swer. questions until a query is encountered that definiteiy sets

a new top-level context. This point is detected by mul-
We performed an error analysis on the NL-only evalu- tiplying template scores until the cumulative product
ation results. We examined all the queries that we did drops below the level indicated by the cumulative cutoff
not answer or for which we were scored wrong, and tried parameter. Our official results were produced by using
to ascertain the cause. values of 0.85 and 0.82 for the template score cutoff and

Of the sentences that were either incorrect or unan- cumulative score cutoff, respectively.

swered, 46% can be attributed to the failure of the Another parameter controls the choice of one of three
template matcher to generate a correct template. Of possible ways of dealing with the failure to produce an
these failures, 80% could be remedied within the current answer for a query. When the system fails to answer a
framework while 20% would require a substantially dif- query, it could refuse to answer any further queries until
ferent approach, such as a parser and grammar that to- one is found that sets a new top-level context. Although
gether could provide more structural information about this would be a ridiculous way for a system to behave
a sentence. We estimate that 12% of the errors were when interacting with a real user, some preliminary in-
due to the database query generation component, and vestigation led us to believe that such a strategy was in-
18% were due to failures of the context mechanism to deed optimal for the evaluation; this is the strategy used
identify the correct context. The remaining errors are to generate our official results. Another possible strat-
attributed to the system declining to answer questions egy, which we dub "always answer," is to have the system
when it determined that its uncertainty about the con- answer every question in the last previously known con-
text was too great. text, regardless of how many intermediate queries fail to

These figures were derived in a highly subjective fash- produce answers. Finally, we have a "usually answer"

ion, but, nevertheless, we feel they give a roughly ac- mode, in which queries are always evaluated in the most

curate picture. For a majority of the utterances that recently determined context, unless there is some fea-

caused trouble for the template-generating component, ture of the query that indicates epiicit dependency on

it is clear that adding a new phrase or new slot could a question that was not answered (such as a pronoun

solve the problem. The conclusion we draw from this is or demonstrative reference that could rely on an unan-

that a template-matching approach can be highly suc- swered query for its resolution).

cessful on a domain of about the same complexity as We ran experiments on our system for the following con-
ATIS. How well this type of approach would scale up to figurations of parameters on both NL and SLS data.
a significantly larger domain remains uncertain. Thiese runs were made by changing only the parameters

discussed above, without attempting to influence the be-
4. ADDITIONAL EXPERIMENTS havior of the system in any other way:

We have implemented several parameters that control
the behavior of the system. One parameter is the 1. Relaxed Cutoff. We set the template score cutoff
template-matcher score cutoff. to 0.82, and the cumulative cutoff to 0.70. Some of

our earlier experiments suggested that these values
We recognized that if a system failed to respond correctly were alfr proes speech re e outs

to a query, it might give incorrect answers to a number p e e o fia n oversig they re ouse

of subseqent context-dependent queries, even though the in thecal test).

subseqent sentences were processed correctly, given ev-

erything the system can determine about the state of the 2. Low Scoring Template Strategy. This strategy
dialogue. Therefore, we have included several parame- bets the template score cutoff and cumulative cutoff
ters that regulate the generation of responses in situa- to be 0.01. This allows very low scoring templates
tions in which, for one reason or another, the state of to be considered as analyses for a sentence. The
the context is in doubt. conservative strategy of not answering questions af-

ter failure to prod~.ce any template at all until the
One such parameter is a cumulative template-score cut- te xt-resetti ng s en at e as s ll fo llow e

off. We reasoned that if the system answers a series of

questions, each of which receives an acceptable, although 3. Maximum Recall Strategy. This strategy com-
less than perfect, template score, eventually a point is bines the Low-Scoring Template Strategy with the
reached in which the system is so uncertain about the Always Answer strategy. It seeks to maximize recall
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by always answering a query whenever any analy- the desired recall-precision tradeoff, although neither of
sis at all is possible. Naturally, precision suffers, these strategies produced the best results as measured
because of the increased chance that some of the by weighted error. It is also interesting to note that.
poorly rated analyses will be wrong. with the exception of the tests for Relaxed Cutoff and

4. Maximum Precision Strategy. We attempted to Usually Answer configurations (which were in any case
very close), the ordering of the results as measured by

maximize the system's precision score by setting the
template score cutoff and the cumulative cutoff to weighted error was the same for both NL and SLS tests,

be 0.99. This strategy causes the system to respond
only to templates with perfect scores and to stop an- 6. SLS EVALUATION WITH BBN
swering in context whenever any uncertainty about RECOGNIZER OUTPUT
a template exists. Naturally, because some correct
templates will be discarded, recall suffers. Because the preliminary results of the February 1992

ATIS benchmark tests suggested that the SRI TRAV-
5. Always Answer Strategy. The "always answer" ELOGUE NL system and the BBN BYBLOS speech-

context-handling strategy was adopted, keeping the recognition system had both performed particularly well,
template score cutoff the same as in the official run. SRI and BBN collaborated on an experiment to see how

a answer" well a combined system would have performed on the
6. ntUsualdly g A swertrategy. wasapted, " y t benchmark test, using the output of BYBLOS as the in-
context-handling strategy was adopted, keeping the putoTAEOU.W tokheBBLSupt

template score cutoff the same as in the official run. fro to FEbrUar 19 tIS t Pe test
from the official February 1992 ATIS SPREC test and

ran it through TRAVELOGUE, configured exactly as it
5. RESULTS OF EXPERIMENTS was for the official February 1992 ATIS SLS test. So, al-

The results we observed for the experiments described though this was not submitted as official February 1992

in the previous section (as well as our official results on ATIS SLS test output, it is comparable in every respect
the evaluation) were as follows, ordered by increasing to the official results obtained by BBN and SRI. The
weighted error: resulting combination produced 482 correct answers, 69

wrong answers, and 136 without answers, for a weighted
For NL only: error of 39.88%.

Parameter No Wd. This experiment may shed some light on the impact

Settings Right Wrong Ans IError of speech-recognition accuracy for SLS performance, if
72 - we compare SLS performance with the SRI and BBN

Always Answer 554 60 61 29.84 recognizers, holding NL processing constant. The im-
Usually Answer 538 60 89 30.42 provement of the SLS weighted error from 45.4% to
Relaxed Cutoff 537 62 88 30.86 39.9% represents a error reduction by a factor of 0.12,
Official Results 533 60 94 31.05 and was obtained was obtained by running the NL sys-
Low-Sce Templat 558 90 4 39 1.88 tern on input data for which the word error rate on class
Maximum Recall 565 98 24 32.02 A and D sentences was improved from 8 4% to 6.2%, an

MaximumPrecision 480_ _ 8_ 19_ _5.6 error reduction factor of 0.26. The corresponding sen-
tence error rates were 44.5% and 34.6%. for an error

For SLS: reduction factor of 0.22.

Parameter No Wtd. Although the NL processing in TRAVELOGUE is de-

Settings Right Wrong Ans Error signed to be robust in the face of recognition errors, it is

Always Answer 457 75 155 44.40 clear that the point of diminishing return on recognition

Relaxed Cutoff 447 69 171 44.98 accuracy has not yet been reached, and significant im-

Usually Answer 445 69 173 45.27 provements can be obtained if these error rates can be

Official Results 444 69 174 45.40 reduced still further.

Low-Score Template 455 86 146 46.29 We did one other experiment with the combination of
Maximum Recall 460 93 134 46.58 BYBLOS and TRAVELOGUE, in which we took the
Maximum Precision 423 62 202 47.45 BYBLOS SPREC test output and ran it through TRAV-

ELOGUE using the parameter settings that, we now be-
As can be seen, the predicted parameter settings for lieve to be optimal as a result of the experiments re-
Maximum Recall and Maximum Precision did result in ported in the preceding section. This was a combination
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of the "always answer" context-handling strategy with It seems to be the case that the weighted error metric
the "relaxed cutoff" parameter settings. We felt that disguises differences in system behavior. For example.
this would represent the best performance the system the Maximum Precision and Maximum Recall strategies
was currently capable of without increasing the basic produce vastly different behavior on the SLS test: the
underlying competence. In this experiment we obtained Maximum Recall strategy answers almost 70 queries to
495 correct answers, 77 wrong answers, and 117 without which the Maximum Precision strategy gives no answer.
answers, for a weighted error of 39.16%. Yet the difference in weighted error for the two strategies

is less than one point.

7. ELIMINATING CLASS X For comparing performance across systems, it is desire-
SENTENCES able to have a metric for comparing performan, across

In addition to the above tests, we ran a test to evalu- systems that is relatively insensitive to different answer-

ate the impact of a proposed change to the evaluation ing strategies, and therefore has a better chance of truly

procedures to eliminate class-X sentences from the evalu- reflecting the comprehensiveness of a system's coverage
of the domain. These experiments demonstrate that the

ation. Queries are classified as X for a variety of reasons, weighedom ei c at eastrcmes close thav tha

the most common being that the query lies outside the weighted error metric at least comes close to having that
property -- a fortunate consequence, because it, was cho-

scope of the database. Although class-X utterances are property onate consequence ausea. wa chonot counted when computing the scores for NL and SLS sen primarily on the basis of its inuitive appeal. On the
evalutions, it may be the case that class-X queries that other hand, systems with specific characteristics are pre-are clearly outside the scope of the system's processing ferred for particular purposes. For example, when SRIcapabilities could adversely impact the system's ability uses its system for MADCOW data collection, it runs into track the context, and thus indirectly affect the sys- a mode more closely approximating the Maximum Recall
temr's test results, strategy, on the theory that producing some answer, eventhough not perfectly correct, will hold the user's interest
If the inclusion of class-X sentences in the test were to and lead to a smoother flowing dialogue than would fre-
make a large difference in the scores, it would call into quent "I don't understand" responses, even though the
question the success of the effort to eliminate the impact experiments indicate that such a strategy is suboptimal
of processing class-X queries from the evaluation results. for evaluation. These experiments underscore the need

to examine multiple properties of a system to arrive at
To test the impact of class-X sentences on our system, conclusions regarding that system's overall effectiveness
we ran the system configured exactly as it was for the at solving user problems, as effectiveness can depend on
official test, except that all class-X sentences were ex- factors other than the system's ability to obtain a low
cluded from consideration. We found that the weighted weighted error.
error decreased by 0.58 for the NL-only test and by 1.0
for the SLS test. While there is an observable "class-X An important observation is that the five systems with
effect," it seems to be relatively small with our system, the best scores in the NL evaluation differed by only
and would only be noticeable with a processing strategy 3.8 points. We have shown that our system can demon-
that based answering decisions on context uncertainty, strate a variation of more than 3 points in weighted error

through the selection of different answering strategies
holding the basic competence of the system constant.

8. SUMMARY AND CONCLUSIONS We would therefore be reluctant to conclude that the
It is difficult to draw conclusions from these experiments scores achieved on this benchmark test indicate a clear
about the efficacy of various parameter settings and pro- difference among these five systems in basic competence.
cessing strategies for improving performance on the eval- We found it interesting that the Always Answer context
uation. The results are in fact very similar, and could se would haveroduced the bes result onthis
well be different with a different test set. It is possible to strategy would have produced the best results on this

conclude with confidence only that the Maximum Pre- evaluation, because this is the most reasonable strategy
yis unlikely to yield the lowest weighted to employ in a system intended to interact with a user,cision strategy rather than merely scoring high on the evaluation. If

the goal is to evaluate systems under conditions that ap-
The results of these experiments were rather surprising proximate as much as possible their conditions of use in
in that we had originally believed that the parameter the real world, it is reassuring that behavior appropri-
choices would have a more significant impact on the ate to the real world would not be inappropriate for the
weighted error than what we observed. Indeed, the re- evaluation.
suits show a surprising insensitivity to parameter choice.
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INTEGRATING MULTIPLE KNOWLEDGE SOURCES FOR
DETECTION AND CORRECTION OF REPAIRS IN

HUMAN-COMPUTER DIALOG*

John Bear, John Dowding, Elizabeth Shribergt

SRI International
Menlo Park, California 94025

ABSTRACT (Shriberg et al., 1992a).
We have analyzed 607 sentences of sponta- The problem of disfluent speech for language

neous human-computer speech data containing re- understanding systems has been noted but has
pairs, drawn from a total corpus of 10,718 sen- received limited attention. Hindle (1983) at-
tences. We present here criteria and techniques for tempts to delimit and correct repairs in sponta-
automatically detecting the presence of a repair, neous human-human dialog, based on transcripts
its location, and making the appropriate correc- containing an "edit signal," or external and reli-
tion. The criteria involve integration of knowledge able marker at the "expunction point," or point of
from several sources: pattern matching, syntactic interruption. Carbonell and Hayes (1983) briefly
and semantic analysis, and acoustics. describe recovery strategies for broken-off and

restarted utterances in textual input. Ward (1991)
INTRODUCTION addresses repairs in spontaneous speech, but does

Spontaneous spoken language often includes not attempt to identify or correct them. Our ap-
speech that is not intended by the speaker to be proach is most similar to that of Hindle. It differs,
part of the content of the utterance. This speech however, in that we make no assumption about
must be detected and deleted in order to correctly the existence of an explicit edit signal. As a reli-
identify the intended meaning. The broad class able edit signal has yet to be found, we take it as
of disfluencies encompasses a number of phenom- our problem to find the site of the repair automat-
ena, including word fragments, interjections, filled ically.
pauses, restarts, and repairs. We are analyzing It is the case, however, that cues to repair exist
the repairs in a large subset (over ten thousand
sentences) of spontaneous speech data collected over a range of syllables. Research in speech pro-
for the DARPA Spoken Language Program.1 We duction has shown that repairs tend to be marked

have categorized these disfluencies as to type and prosodically (Levelt and Cutler, 1983) and there

frequency, and are investigating methods for their is perceptual evidence from work using lowpass-
automatic detection and correction. Here we re- filtered speech that human listeners can detect the
port promising results on detection and correction occurrence of a repair in the absence of segmentalport information (Lickley, 1991).
of repairs by combining pattern matching, syn-

tactic and semantic analysis, and acoustics. This In the sections that follow, we describe in de-
paper extends work reported in an earlier paper tail our corpus of spontaneous speech data and

*This research was supported by the Defense Advanced present an analysis of the repair phenomena ob-
Research Projects Agency under Contract ONR N00014- served. In addition, we describe ways in which
90-C-0085 with the Office of Naval Research. It was also pattern matching, syntactic and semantic analy-
supported by a Grant, NSF IRI-8905249, from the National sis, and acoustic analysis can be helpful in detect-
Science Foundation. The views and conclusions contained
in this document are those of the authors and should not ing and correcting these repairs. We use pattern
be interpreted as necessarily representing the official poli- matching to determine an initial set of possible
cies, either expressed or implied, of the Defense Advanced repairs; we then apply information from syntac-
Research Projects Agency of the U.S. Government, or of tic, semantic,hn acoustic analyses to distinguish
the National Science Foundation.

t Elizabeth Shriberg is also affiliated with the Depart- actual repairs from false positives.
ment of Psychology at the University of California at
Berkeley.

1DARPA is the Defense Advanced Research Projects
Agency of the United States Government
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THE CORPUS I want fl- flights to boston.

The data we are analyzing were collected M1- I M

as part of DARPA's Spoken Language Systems what what are the fares

project. The corpus contains digitized waveforms MAl M1

and transcriptions of a large number of sessions in show me flights daily flights

which subjects made air travel plans using a com- MI X M1

puter. In the majority of sessions, data were col- I want a flight one way flight
lected in a Wizard of Oz setting, in which subjects Ml j X X MA
were led to believe they were talking to a com- I want to leave depart before
puter, but in which a human actually interpreted R I R,
and responded to queries. In a small portion of what are what are the fares
the sessions, data were collected using SRI's Spo- M1  M 2  AM1  M2
ken Language System (Shriberg et al., 1992b), in ... fly to boston from boston
which no human intervention was involved. Rel- R Ml I R, M1

evant to the current paper is the fact that al- ... fly from boston from denver
though the speech was spontaneous, it was some- M, R, M1  R1
what planned (subjects pressed a button to begin what are are there any flights
speaking to the system) and the transcribers who X X
produced lexical transcriptions of the sessions were
instructed to mark words they inferred were ver- Table 1: Examples of Notation
bally deleted by the speaker with special symbols.
For further description of the corpus, see MAD-
COW (1992). if they occur immediately before the site of a re-

pair.

NOTATION DISTRIBUTION
In order to classify these repairs, and to facil-

itate communication among the authors, it was Of the 10,000 sentences in our corpus, 607 con-
necessary to develop a notational system that tained repairs. We found that 10% of sentences
would: (1) be relatively simple, (2) capture suf- longer than nine words contained repairs. In con-

ficient detail, and (3) describe the vast majority trast, Levelt (1983) reports a repair rate of 34% for

of repairs observed. Table 1 shows examples of human-human dialog. While the rates in this cor-

the notation used, which is described fully in Bear pus are lower, they are still high enough to be sig-

et al. (1992). nificant. And, as system developers move toward
more closely modeling human-human interaction,

The basic aspects of the notation include the percentage is likely to rise.
marking the interruption point, the extent of
the repair, and relevant correspondences between Although only 607 sentences contained dele-
words in the region. To mark the site of a re- tions, some sentences contained more than one,

pair, corresponding to Hindle's "edit signal" (Hin- for a total of 646 deletions. Table 2 gives the

die, 1983), we use a vertical bar (I). To express breakdown of deletions by length, where length
the notion that words on one side of the repair is defined as the number of consecutive deleted

correspond to words on the other, we use a com- words or word fragments. Most of the deletions

bination of a letter plus a numerical index. The
letter M indicates that two words match exactly.
R indicates that the second of the two words Deletion Length Occurrences Percentage
was intended by the speaker to replace the first. 1 376 59%
The two words must be similar-either of the same 2 154 24%
lexical category, or morphological variants of the 3 52 8%
same base form (including contraction pairs like 4 25 4%
"I/I'd"). Any other word within a repair is no- 5 23 4%
tated with X. A iAyphen affixed to a symbol in- 6+ 16 3%
dicates a word fragment. In addition, certain cue
words, such as "sorry" or "oops" (marked with
CR) as well as filled pauses (CF) are also labeled Table 2: Distribution of Repairs by Length
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Type Pattern Freq. Match Fill Length
Length 0 1 2 3

Length 1 Repairs
1 .82 .74 .69 .28

Fragments M,-,Ri -,X- 61% (39) (65) (43) (39)
Repeats M1iM1  16%
Insertions M1 I X1... XiMi 7% 2 1.0 .83 .73 .00
Replacement R I Ri 9% (10) (6) (11) (1)
Other XIX 5%

3 1.0 .80 1.0 -

Length 2 Repairs (4) (5) (2)

Repeats M 1 M2 I M 1 M2  28% 4 1.0 1.0 --
Replace 2nd M1 R1 I M1 R1  27% (2) (1)
Insertions MIM 2 1MIX1 ... X i M 2  19% - indicates no observations
Replace 1st R1 Mi I Ri M1  10%
Other ...j... 17% Table 4: Fill Length vs. Match Length

Table 3: Distributio.. of Repairs by Type

were fairly short; deletions of one or two words ac-counted for 82% of the data. We categorized the component reported on here looks for identical se-
length 1 and length 2 repairs according to their quences of words, and simple syntactic anomalies,lengh 1and engh 2 epars acoring o teir such as "a the" or "to from."
transcriptions. The results are summarized in Ta-
ble 3. For simplicity, in this table we have counted Of the 406 sentences containing nontrivial re-
fragments (which always occurred as the second pairs, the program successfully found 309. Of
deleted word) as whole words. The overall rate of these it successfully corrected 177. There were 97
fragments for the length 2 repairs was 34%. sentences that contained repairs which it did not

find. In addition, out of the 10,517 sentence corpusA major repair type involved matching strings (1,1-20trva)itncrelyhphszd

of identical words. More than half (339 out of 436) (10,718 - 201 trivial), it incorrectly hypothesized

of the nontrivial repairs (more editing necessary that an additional 191 contained repairs. Thus of

than deleting fragments and filled pauses) in the 10,517 sentences of varying lengths, it pulled out

corpus were of this type. Table 4 shows the distri- 500 as possibly containing a repair and missed 97
butions of these repairs with respect to two param- sentences actually containing a repair. Of the 500

eters: the length in words of the matched string, that it proposed as containing a repair, 62% actu-

and the number of words between the two matched ally did and 38% did not. Of the 62% that had re-

strings. Numbers in parentheses indicate the num- pairs, it made the appropriate correction for 57%.

ber of occurrences, and probabilities represent the These numbers show that although pattern
likelihood that the phrase was actually a repair matching is useful in identifying possible repairs,
and not a false positive. Two trends emerge from it is less successful at making appropriate correc-
these data. First, the longer the matched string, tions. This problem stems largely from the over-
the more likely the phrase was a repair. Second, lap of related patterns. Many sentences contain a
the more words there were intervening between the subsequence of words that match not one but sev-
matched strings, the less likely the phrase was a eral patterns. For example the phrase "FLIGHT
repair. <word> FLIGHT" matches three different pat-

terns:
SIMPLE PATTERN MATCHING show the flight earliest flight

We analyzed a subset of 607 sentences con- M1 X M,
taining repairs and concluded that certain sim-
ple pattern-matching techniques could successfully show the flight time flight date
detect a number of them. The pattern-matching M1  R1  I M, R1
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show the delta flight united flight
R1  M1 i Ri M Syntax Only

Each of these sentences is a false positive for Marked Marked
the other two patterns. Despite these problems as as
of overlap, pattern matching is useful in reducing Repair False Positive
the set of candidate sentences to be processed for Repairs 68 (96%) 56 (30%)
repairs. Rather than applying detailed and pos- False Positives 3 (4%) 131 (70%)
sibly time-intensive analysis techniques to 10,000
sentences, we can increase efficiency by limiting Syntax and Semantics
ourselves to the 500 sentences selected by the pat-
tern matcher, which has (at least on one measure) Marked Marked
a 75% recall rate. The repair sites hypothesized as as
by the pattern matcher constitute useful input for Repair False Positive
further processing based on other sources of infor- Repairs 64 (85%) 23 (20%)
mation. False Positives 11 (15%) 90 (80%)

NATURAL LANGUAGE
CONSTRAINTS Table 5: Syntax and Semantics Results

Here we describe two sets of experiments to
measure the effectiveness of a natural language
processing system in distinguishing repairs from dataset of 335 sentences, of which 179 containedfalse positives. One approach is based on parsing repairs and 176 contained false positives. The ap-
of whole sentences; the other is based on parsing proach was as follows: for each sentence, parsingof wolesenencs; he theris ase onparing was attempted. If parsing succeeded, the sentence
localized word sequences identified as potential re- was atmed. If parsing ucd ntpair. Bth f teseexprimets elyon he at- was marked as a false positive. If parsing did notpairs. B oth of these ex perim ents rely on the p at-su c e ,t n p a er m t hi g w s s d to e e ttern matcher to suggest potential repairs, succeed, then pattern matching was used to detect

possible repairs, and the edits associated with the
The syntactic and semantic components of the repairs were made. Parsing was then reattempted.

Gemini natural language processing system are If parsing succeeded at this point, the sentence was
used for both of these experiments. Gemini is marked as a repa Otherwise, it was marked as
an extensive reimplementation of the Core Lan- no opinion.
guage Engine (Alshawi et al., 1988). It includesmoduar yntaticand ematic ompnent, ite-Table 5 shows the results of these experiments.

moduar yntaticand ematic ompnent, ite- We ran them two ways: once using syntactic con-
grated into an efficient all-paths bottom-up parser Weranth two ays on using syntactic cn-straints alone and again using both syntactic and
(Moore and Dowding, 1991). Gemini was trained semantic constraints. As can be seen, Gemini
on a 2,200-sentence subset of the full 10,718- is quite accurate at detecting a repair, although
sentence corpus. Since this subset excluded the somewhat less accurate at detecting a false posi-
unanswerable sentences, Gemini's coverage on the
full corpus is only an estimated 70% for syntax,
and 50% for semantics. 2  a repair, it produced the intended correction in 62out of 69 cases for syntax alone, and in 60 out of

Global Syntax and Semantics 64 cases using combined syntax and semantics. In
both cases, a large number of sentences (29% for

In the first experiment, based on parsing com- syntax, 50% for semantics) received a no opinion
plete sentences, Gemini was tested on a subset evaluation. The no opinion cases were evenly
of the data that the pattern matcher returned as split between repairs and false positives in both
likely to contain a repair. We excluded all sen- tests.
tences that contained fragments, resulting in a

______________The main points to be noted from Table 5 are
2 Gemini's syntactic coverage of the 2,200-sentence that with syntax alone, the system is quite ac-

dataset it was trained on (the set of annotated and an- curate in detecting repairs, and with syntax and
swerable MADCOW queries) is approximately 91%, while semantics working together, it is accurate at de-
its semantic coverage is approximately 77%. On a recent
fair test, Gemini's syntactic coverage was 87% and seman- tecting false positives. However, since the coverage
tic coverage was 71%. of syntax and semantics will always be lower than
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the coverage of syntax alone, we cannot compare parse, but one of edits resulted in a sequence that
these rates directly. parsed, the original sequence was very unlikely to

be a false positive (right for 34 of 35 cases). Fur-
Since multiple repairs and false positives can thermore, the edit that parsed was chosen to be

occur in the same sentence, the pattern matching the repaired string. When more than one of the
process is constrained to prefer fewer repairs to edited strings parsed, the edit was chosen by pre-
more repairs, and shorter repairs to longer repairs. ferring them in the following order: (1) MiJX MI,
This is done to favor an analysis that deletes the (2) R1 M1 Ri MI, (3) M, R, IM, R1 . Of the 37 cases
fewest words from a sentence. It is often the case of repairs, the correct edit was found in 27 cases,
that more drastic repairs would result in a syntac- while in 7 more an incorrect edit was found; in
tically and semantically well-formed sentence, but 3 cases no opinion was registered. While these
not the sentence that the speaker intended. For numbers are quite promising, they may improve
instance, the sentence "show me <flights> daily even more when information from syntax and se-
flights to boston" could be repaired by deleting mantics is combined with that from acoustics.
the words "flights daily," and would then yield a
grammatical sentence, but in this case the speaker ACOUSTICS
intended to delete only "flights." A third source of information that can be help-

Local Syntax and Semantics ful in detecting repairs is acoustics. In this sec-
tion we describe first how prosodic information can

In the second experiment we attempted to im- help in distinguishing repairs from false positives
prove robustness by applying the parser to small for patterns involving matched words. Second, we
substrings of the sentence. When analyzing long report promising results from a preliminary study
word strings, the parser is more likely to fail due of cue words such as "no" and "well." And third,
to factors unrelated to the repair. For this ex- we discuss how acoustic information can aid in
periment, the parser was using both syntax and the detection of word fragments, which occur fre-
semantics, quently and which pose difficulty for automatic

The phrases used for this experiment were the speech recognition systems.

phrases found by the pattern matcher to contain Acoustic features reported in the following
matching strings of length one, with up to three analyses were obtained by listening to the sound
intervening words. This set was selected because, files associated with each transcription, and by
as can be seen from Table 4, it constitutes a large inspecting waveforms, pitch tracks, and spectro-
subset of the data (186 such phrases). Further- grams produced by the Entropic Waves software
more, pattern matching alone contains insufficient package.
information for reliably correcting these sentences.

The relevant substring is taken to be the Simple Patterns
phrase constituting the matched string plus in- While acoustics alone cannot tackle the prob-
tervening material plus the immediately preceding lem of locating repairs, since any prosodic patterns
word. So far we have used only phrases where the found in repairs are likely to be found in fluent
grammatical category of the matched word was ei- speech, acoustic information can be quite effective
ther noun or name (proper noun). For this test we when combined with other sources of information,
specified a list of possible phrase types (NP, VP, in particular with pattern matching.
PP, N, Name) that count as a successful parse. We
intend to run other tests with other grammatical In studying the ways in which acoustics might

categories, but expect that these other categories help distinguish repairs from false positives, we

could need a different heuristic for deciding which began by examining two patterns conducive to

substring to parse, as well as a different set of ac- acoustic measurement and comparison. First, we

ceptable phrase types. focused on patterns in which there was only one
matched word, and in which the two occurrences

Four candidate strings were derived from the of that word were either adjacent or separated by
original by making the three different possible only one word. Matched words allow for compar-
edits, and also including the original string un- ison of word duration; proximity helps avoid vari-
changed. Each of these strings was analyzed by ability due to global intonation contours not asso-
the parser. When the original sequence did not ciated with the patterns themselves. We present
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here analyses for the MIuMi ("flights for <one>
one person") and MIJXM 1 ("<flight> earliest Pauses after Pauses before

flight") repairs, and their associated false positives X (only) X (only)

("u s air five one one," "a flight on flight number and and

five one one," respectively). FO of X less FO of X greater
_______than FO of 1st M, than FO of 1st M,

In examining the M1 IM, repair pattern, we
found that the strongest distinguishing cue be- Repairs .00 .92
tween the repairs (N = 20) and the false positives
(N = 20) was the interval between the offset of False .58 .00
the first word and the onset of the second. False Positives
positives had a mean gap of 42 msec (s.d. = 55.8)
as opposed to 380 msec (s.d. = 200.4) for repairs.
A second difference found between the two groups
was that, in the case of repairs, there was a statis- Table 6: Combining Acoustic Characteristics of
tically reliable reduction in duration for the sec- M1IXMI Repairs
ond occurrence of M1 , with a mean difference of
53.4 msec. However because false positives showed
no reliable difference for word duration, this was Cue Words
a much less useful predictor than gap duration. A second way in which acoustics can be helpful
FO of the matched words was not helpful in sep- given the output of a pattern matcher is in deter-
arating repairs from false positives; both groups mining whether or not potential cue words such
showed a highly significant correlation for, and no "no"sigifcat iferecebewenthe mean F0 of the as noare used as an editing expression (Hork-
significant difference between, ett, 1967) as in "...flights <between> <boston>

<and> <dallas> <no> between oakland and

A different set of features was found to be use- boston." False positives for these cases are in-
ful in distinguishing repairs from false positives stances in which the cue word functions in some
for the MI 1XM 1 pattern. A set of 12 repairs other sense ("I want to leave boston no later than

and 24 false positives was examined; the set of one p m."). Hirshberg and Litman (1987) have
false positives for this analysis included only flu- shown that cue words that function differently can
ent cases (i.e., it did not include other types of be distinguished perceptually by listeners on the
repairs matching the pattern). Despite the small basis of prosody. Thus, we sought to determine
data set, some suggestive trends emerge. For ex- whether acoustic analysis could help in deciding,
ample, for cases in which there was a pause (200 when such words were present, whether or not
msec or greater) on only one side of the inserted they marked the interruption point of a repair.
word, the pause was never after the insertion (X) In a preliminary study of the cue words "no"
for the repairs, and rarely before the X in the and "well," we compared 9 examples of these
false positives. A second distinguishing character- words at the site of a repair to 15 examples of
istic was the peak FO value of X. For repairs, the the same words occurring in fluent speech. We
inserted word was nearly always higher in FO than th ese groupre ite shable
the preceding MI; for false positives, this increase found that these groups were quite distinguishableon the basis of simple prosodic features. Table 7
in FO was rarely observed. Table 6 shows the re- shows the percentage of repairs versus false pos-
suits of combining the acoustic constraints just de- shows chapracentaied rise or fall pns-
scribed. As can be seen, such features in combina- itives characterized by a clear rise or fall in F0
tion can be quite helpful in distinguishing repairs
from false positives of this pattern. Future work
will investigate the use of prosody in distinguish- FO FO Lexical Cont.
ing the M, IXMI repair not only from false posi- rise fall stress speech
tives, but also from other possible repairs having
this pattern, i.e., MIR1IMIR1 and RiMi RIM 1 . Repairs .00 1.00 .00 .00

False Positives .87 .00 .87 .73

Table 7: Acoustic Characteristics of Cue Words
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4000

I Vould 1i k e to (fra-> f l y

Figure 1: A glottalized fragment

(greater than 15 Hz), lexical stress (determined these cases, for example,
perceptually), and continuity of the speech im-
mediately preceding and following the editing ex- "leaving at <seven> <fif-> eight thirty,"
pression ("continuous" means there was no silent
pause on either side of the cue word). As can be the presence of the fragment is an especially im-
seen, at least for this limited data set, cue words portant cue because there is nothing (e.g., no
marking repairs were quite distinguishable from matched words) to cause the pattern matcher to
those same words found in fluent strings on the hypothesize the presence of a repair.
basis of simple prosodic features. We studied 50 fragments drawn at random

from our total corpus of 366. The most reliable
Fragments acoustic cue over the set was the presence of a

silence following the fragment. In 49 out of 50
A third way in which acoustic ke dge can cases, there was a silence of greater than 60 nsec;

assist in detecting and correcting repairs is in the the average silence was 282 msec. Of the 50 frag-
recognition of word fragments. As shown earlier, ments, 25 ended in a vowel, 13 contained a vowel

fragments are exceedingly common; they occurred and ended in a consonant, and 12 contained no

in 366 of our 607 repairs. Fragments pose diffi- vocalic portion.

culty for state-of-the-art recognition systems be-

cause most recognizers are constrained to produce It is likely that recognition of fragments of the
strings of actual words, rather than allowing par- first type, in which there is abrupt cessation of
tial words as output. Because so many repairs in- speech during a vowel, can be aided by looking for
volve fragments, if fragments are not represented heavy glottalization at the end of the fragment.
in the recognizer output, then information relevant We coded fragments as glottalized if they showed
to the processing of repairs is lost. irregular pitch pulses in their associated waveform,

spectrogram, and pitch tracks. We found glottal-We found that often when a fragment had suf- ization in 24 of the 25 vowel-final fragments in

ficient acoustic energy, one of two recognition er- orat a. An example ofa lottal fragment is
rorsoccrred Eiher he ragmnt as msreog- our data. An example of a glottalized fragment is

rors occurred. Either the fragment was misrecog- shown in Figure 1.

nized as a complete word, or it caused a recog-

nition error on a neighboring word. Therefore if Although it is true that glottalization occurs
recognizers were able to flag potential word frag- in fluent speech as well, it normally appears on
ments, this information could aid subsequent pro- unstressed, low FO portions of a signal. The 24
cessing by indicating the higher likelihood that glottalized fragments we examined however, were
words in the region might require deletion. Frag- not at the bottom of the speaker's range, and
ments can also be useful in the detection of repairs most had considerable energy. Thus when corn-
requiring deletion of more than just the fragment. bined with the feature of a following silence of at
In approximately 40% of the sentences containing least 60 msec, glottalization on syllables with suffi-
fragments in our data, the fragment occurred at cient energy and not at the bottom of the speaker's
the right edge of a longer repair. In a portion of
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range, may prove a useful feature in recognizing guage," American Journal of Computational Lin-
fragments. guistics, Vol. 9, Numbers 3-4, pp. 123-146.

5. Hindle, D. (1983) "Deterministic Parsing of Syn-
CONCLUSION tactic Non-fiuencies," Proceedings of the ACL, pp.

123-128.
In summary, disfluencies occur at high enough 6. Hockett, C. (1967) "Where the Tongue Slips,

rates in human-computer dialog to merit consid- There Slip I," in To Honor Roman Jakobson: Vol.
eration. In contrast to earlier approaches, we have 2, The Hague: Mouton.
made it our goal to detect and correct repairs au- 7. Levelt, W. (1983) "Monitoring and self-repair in
tomatically, without assuming an explicit edit sig- speech," Cognition, Vol. 14, pp. 41-104.
nal. Without such an edit signal, however, re- 8. Levelt, W., and A. Cutler (1983) "Prosodic Mark-
pairs are easily confused both with false positives ing in Speech Repair," Journal of Semantics, Vol.
and with other repairs. Preliminary results show 2, pp. 205-217.
that pattern matching is effective at detecting re- 9. Lickley, R., R. Shillcock, and E. Bard (1991)
pairs without excessive overgeneration. Our syn- "Processing Disfluent Speech: How and when aredisfluencies found?" Proceedings of the Second
tactic/semantic approaches are quite accurate at European Conference on Speech Communication
detecting repairs and correcting them. Acoustics and Technology, Vol. 3, pp. 1499-1502.
is a third source of information that can be tapped 1b. MADCOW (1992) "Multi-site Data Collection for
to provide evidence about the existence of a repair. a Spoken Language Corpus," Proceedings of the

DARPA Speech and Natural Language Workshop,
While none of these knowledge sources by it- February 23-26, 1992.

self is sufficient, we propose that by combining 11. Moore, R. and J. Dowding (1991) "Efficient
them, and possibly others, we can greatly enhance Bottom-up Parsing," Proceedings of the DARPA
our ability to detect and correct repairs. As a next Speech and Natural Language Workshop, Febru-
step, we intend to explore additional aspects of the ary 19-22, 1991, pp. 200-203.

syntax and semantics of repairs, analyze further 12. Shriberg, E., Bear, J., and Dowding, 3. (1992 a)
"Automatic Detection and Correction of Repairs

acoustic patterns, and pursue the question of how in Human-Computer Dialog" Proceedings of the
best to integrate information from these multiple DARPA Speech and Natural Language Workshop,
knowledge sources. February 23-26, 1992.

13. Shriberg, E., Wade, E., and P. Price (1992 b)
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1. INTRODUCTION

This document outlines a system for labeling self-repairs in spontaneous speech. The sys-
tem marks the location and extent of a repair, as well as relevant words in the region of the
repair. Together these labels determine the relationship between the "error" and the
hypothesized "correction." The system is designed to be able to capture distinctions
among different repair patterns while remaining easy to learn, apply, and integrate into
existing transcription formats. Although the system was originally developed to aid our
research on automatic detection and correction of repairs (Shriberg, Bear, & Dowding,
1992; Bear, Dowding & Shriberg, 1992), we hope that it may also prove useful for annota-
tion of spontaneous speech data in related fields.

By "self-repairs" we refer to cases in which one or more words (or word fragments) must
be disregarded in determining a speaker's "intended" utterance. Although one can never
be sure exactly what a speaker intends, listeners can often reliably make such judgments.
For example, given the utterance: "Show me flights from Boston from Denver to Dallas,"
most listeners would agree that "from Boston" should be disregarded, and that "Show me
flights from Denver to Dallas" should be taken as the speaker's intended utterance. Often
such judgments can be made on the basis of a transcription alone; listening to the utterance
makes available prosodic cues which can greatly facilitate these judgments.

The definition of what constitutes a repair varies in the literature (e.g., Levelt, 1989;
Blackmer & Mitton, 1991; Shriberg, Bear & Dowding, 1992). The present system is
designed to annotate four types of phenomena:

"* repairs involving replacements (as in the example above) or insertions

"• repetitions of a string of one or more words ("Show me show me the flight...")

"* fresh starts ("Show me the What are the flights...")

"* cases involving a word fragment ("Show me the flights from Bos- Denver").

A number of other spontaneous speech phenomena are not of concern to this system. For
example, filled pauses ("um," "uh") or other fillers ("well," "okay") are not marked unless
they occur within an actual repair. This system also does not label silent pauses, uncor-
rected mispronunciations, repairs involving more than one speaker, and repairs involving
a single speaker but in which the correction is a considerable distance (more than one sen-
tence away) from the error.

In Sections 2 through 5, we describe our conventions for marking the site of a repair, and
for marking words that distinguish among different repair patterns that we have found use-
ful in our own research. All of the examples included actually occurred in our corpus (our
data consisted of human-computer dialog in the air travel planning domain, see MAD-
COW, 1992). In Section 6, we provide a suggestion for how these labels may be inte-
grated into existing transcription systems.
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2. REPAIR SITE

,V have adopted a vertical bar (1) notation for marking the site of the repair. The bar marks
the resumption of fluent speech; it appears where Hindle (1983) puts his double-dash rep-
resenting what he calls an "edit signal." In the examples that follow, we place labels on the
line below the text.

Example:

List these in increasing in order of increasing fare

In the example just cited, the material following the bar ("in order of increasing fare") is a
continuation of some of the material that preceded the bar ("List these"). In some repairs,
however, the material after the bar constitutes the beginrang of a new sentence. These
repairs are often referred to as "fresh starts" (e.g., Levelt, 1989),

We mark fresh starts with a special kind of bar notation, so that they can be distinguished
from other types of repairs. For fresh starts we use either a period-bar (.1) or a double-bar
(11). The .1 notation is used for cases in which there is a semantic relationship between the
words preceding and following the bar; using this notation commits the labeler to labeling
relationships between individual words on either side of the bar (as explained in Section
3). For instance, in the example below, "what is the cheapest" appears on both sides of the
bar, and "fare" can be thought of as replacing the word fragment "fl-."

Example:

What is the cheapest fl- what is the cheapest fare

.1

For fresh starts in which a new idea is initiated, we use a double-bar (11) to mark the repair
site. Use of the double bar means that the labeler is not committed to marking the relation-
ships between words preceding and following the repair site. In the next example, there is
a change in the semantics of the utterance, and although there are matching words on
either side of the double-bar (i.e. "does this flight") it would be more difficult to annotate
this utterance at the word level because of the presence of many unmatched words.

Example:

What time does this flight arrive where does this flight make a stop

'I

Use of the .1 versus II notation for repairs that constitute fresh starts is therefore a decision
on the part of the labeler that is made by considering both the semantic relatedness of the
material preceding and following the repair site, and the degree to which there are word-
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by-word correspondences between these two portions of the utterance. A rule of thumb is
to use the double-bar for any cases in which it would be difficult to determine word-by-
word correspondences.

3. WORD-LEVEL LABELS

Individual words in the region of a repair are annotated with one of four possible labels:
M (for "matching"), R (for "replacement"), X (for "insertion" or "deletion") or C (for "cue
word").

3.1 Matching Words

Repairs often include repetitions of words or phrases. We note these words with the letter
M (for match) plus a numerical index, Two occurrences of Mi indicate a repetition of the
same word.

Examples:

I want to go to to Boston

M1  I M1

I'd like I'd like to stop in Washington

MI M2  .1 Ml M2

3.2 Replacements

In many cases we want to express the notion of one word replacing another. This we indi-
cate with an R and a numerical index.

Examples:

to the city at Atlanta in Atlanta using ground transportation

R1  M1  I RI M1

What are the cheap cheapest one way flights

R1  I R1

In the first example, "in" replaces "at." In both examples the relationship between the
two elements constituting the replacement is one of shared grammatical category. In the
second example, not only do the two words have the same grammatical category, they are
also different morphological forms of the same word.
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Finally, in the case of similar but different contractions as illustrated below, we have
elected to use both M and R where appropriate, though clearly there are other reasonable
alternatives. To represent the contracted forms, we use a caret (A) to link the associated
labels.

Examples:

All right I'll I'm interested in flight five eleven

M1 *RI I MIARI

I'd like I would like breakfast served

MI"R1  M2  .1 MI R, M2

Note that these examples of contractions differ from the example in Section 3. 1. Where
the entire contraction is repeated, as in Section 3.1, we simply treat the word as a single
unit and annotate it with Mi. When only part of the contraction is repeated, we break the
contraction down and annotate each of the parts individually.

3.3 Insertions and Deletions

Words which figure in a repair (typically those which occur between the repair site and a
word marked with M or R) and which are not themselves marked with an M or R are
marked with an X. Xs which occur to the left of a vertical bar indicate deletions; those that
occur to the right indicate insertions.

EAample:

List the aircraft list types of aircraft ...

M1  X M2  .1 MI X X M2

This example illustrates a potential difficulty in deciding whether to use X or R. The best
we can say here is that there is no obvious syntactic or semantic relationship between
"the" and "types of." If we had the same grammatical category repeated, or nouns describ-
ing the same semantic class, such as "aircraft/airplanes," then we would use R instead of
X.

Since we do not annotate a construction as as a repair unless some of the words were
intended to be deleted, we never have an annotation such as "I X " where nothing to the
left of the bar is annotated. We have also never encountered a sentence which we felt
ought to be labeled "X I X"

3.4 Cues

We label cue words and phrases (such as "I'm sorry") that occur immediately before the
repair site with C. For cue phrases, each individual word is marked with a C.
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Examples:

from Atlanta back to Pittsburgh I'm sorry back to Denver

M 1 M2  Rl C C I Ml M2  R2

to Atlanta I mean sorry Dallas Fort Worth to Atlanta

M1  C C C I X X X X M1

4. LABELING NONWORDS

4.1 Filled Pauses

We differ from some researchers (e.g. Levelt, 1989; Blackmer & Mitton, 1991) in that we
do not label any cases as repairs if simply a filled pause (typically "uh" or "urn") is
present. We do, however, label filled pauses that occur within a longer repair. These filled
pauses are marked with FP.

Examples:

Show me just the economy class fares uh flights

R1  FP I R1

How long is the layover in Denver uh in Dallas

MI R1  FP I M1 RI

4.2 Word Fragments

Word fragments occur frequently immediately before a repair site. We indicate fragments
by attaching a hyphen to the appropriate label. For example, if we want to indicate that a
word is a replacement for a previously uttered word fragment, we add a hyphen to the Ri,
as in the following example.

Example:

on July fif- on July twentieth

M1  M2  RI- I M1  M2  R,

In this example, the labeler's judgment is that "twentieth" is meant to replace the fragment
"fif-" which was likely to have been the start of the word "fifteenth."
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Previously we have used Mi to indicate repetition of identical words and Ri to indicate two
words that are similar but not identical. In cases in which a word fragment like "phila-" is
followed by a similar word like "Philadelphia"-that is, in which a labeler feels it is likely
that the fragment was the beginning of what would have been a matched word-the label
M-- should be used.

Example:

Also list fl- flights from Atlanta to Boston...

M 1- I M1

Fragments that seem to be neither matched nor replaced by a word to the right of the repair
site are labeled with X-.

Show me the s- flights that are nonstop

X- I

5. REPAIR EXTENT: HOW MUCH TO ANNOTATE

We have been tacitly following some important conventions about how far to the left and
right of the repair site words should be labeled. Repairs whose repair site is marked by I
or .1 follow these conventions: To the left of the vertical bar, we always annotate all of the
words to be "deleted" and only those. An X under a word to the left of the bar means it
was intended to be "deleted," hence we do not put an X under a word to the left of the bar
unless we think it is part of the error. The words to the right of the bar are only labelled if
we believe they are part of the "correction." Typically the last word labeled in a correction
will be labeled with either an Mi or an Ri, and we do not label the rest of the words in the
utterance after that with X.

Example:

I'd like I'd like to stop in Washington

Correct: M1  M2  .1 M1 M2

Incorrect: MI M2 .1 M1 M2  X X X X

What is the earliest flight leaving leaving Boston

Correct: M lI M1

Incorrect: X X X X X MI I M1
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For fresh starts whose repair site is labeled with 11, we label all words leftward from the
repair site to the beginning of the sentence (they should always be either Xs, Cs, or FPs),
but do not label any words to the right of the repair site.

Example:

Now could you What is the ground transportation available

X X X 11

6. LABELS IN TRANSCRIPTIONS

For purposes of exposition, we have in this document associated labels with transcriptions
simply by placing the labels directly under the words they refer to. In practice, this can be
awkward if the utterance is long and/or contains more than one repair, and in general it
adds clutter to transcriptions. A simple convention that avoids these problems is to associ-
ate an identification number with each repair, and to indicate this number at the repair site
in a transcript. The particular sequence of labels associated with the repair can then be
listed in a separate file, under the identification number. Because no words are "skipped"
when labeling leftward and rightward of the repair site, and since the location of the iden-
tLication number in the transcript corresponds to the bar in the label sequence, the linking
of labels to words in the transcript is completely determined.

Example:

I'd like to f- #001 go at nine #002 ten

001. R1 - I R1

002. R 1 I R1

Corrected sentence: I'd like to go at ten.

In the example above, we have used a pound sign (#) followed by a number as an identi-
fier. The format and characters used in identifiers is arbitrary, however; identifiers should
be determined individually by researchers to avoid any potential confusion with symbols
they use in their own transcription system.
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Abstract

We describe the modification of a grammar to take advantage of prosodic information provided
by a speech recognition system. This initial study is limited to the use of relative duration of
phonetic segments in the assignment of syntactic structure, specifically in ruling out alternative
parses in otherwise ambiguous sentences. Taking advantage of prosodic information in parsing can
make a spoken language system more accurate and more efficient, if prosodic-syntactic mismatches,
or unlikely matches, can be pruned. We know of no other work that has succeeded in automatically
extracting speech information and using it in a parser to rule out extraneous parses.

1 Introduction

Prosodic information can mark lexical stress, identify phrasing breaks, and provide information useful
for semantic interpretation. Each of these aspects of prosody can benefit a spoken language system
(SLS). In this paper we describe the modification of a grammar to take advantage of prosodic infor-
mation provided by a speech component. Though prosody includes a variety of acoustic phenomena
used for a variety of linguistic effects, we limit this initial study to the use of relative duration of pho-
netic segments in the assignment of syntactic structure, specifically in ruling out alternative parses
in otherwise ambiguous sentences.

It is rare that prosody alone disambiguates otherwise identical phrases. However, it is also rare
that any one source of information is the soke feature that separates one phrase from all competitors.
Taking advantage of prosodic information in parsing can make a spoken language system more
accurate and more efficient, if prosodic-syntactic mismatches, or unlikely matches, can be pruned
out. Prosodic structure and syntactic structures are not, of course, completely identical. Rhythmic
structures and the necessity of breathing influence the prosodic structure, but not the syntactic
structure (Gee and Grosjean 1983, Cooper and Paccia-Cooper 1980 ). Further, there are aspects of
syntactic structure that are not typically marked prosodically. Our goal is to show that at least some
prosodic information can be automatically extracted and used to improve syntactic analysis. Other
studies have pointed to possibilities for deriving syntax from prosody (see e.g., Gee and Grosjean 1983,
Briscoe and Boguraev 1984, and Komatsu, Oohira, and Ichikawa 1989) but none to our knowledge
have communicated speech information directly to a parser in a spoken language system.
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2 Corpus

For our corpus of sentences we selected a subset of a corpus developed previously (see Price et
a!. 1989) for investigating the perceptual role of prosodic information in disambiguating sentences.
A set of 35 phonetically ambiguous sentence pairs of differing syntactic structure was recorded by
professional FM radio news announcers. By phonetically ambiguous sentences, we mean sentences
that consist of the same string of phones, i.e., that suprasegmental rather than segmental information
is the basis for tne distinction between members of the pairs. Men ýers of the pairs were read in
disambiguating contexts on days separated by a period of several weeks to avoid exaggeration of the
contrast. In the earlier study listeners viewed the two contexts while hearing one member of the pair,
and were asked to select the appropriate context for the sentence. The results showed that listeners
can, in general, reliably separate phonetically and syntactically ambiguous sentences on the basis
of prosody. The original study investigated seven types of structural ambiguity. The present study
used a subset of the sentence pairs which contained prepositional phrase attachment ambiguities, or
particle/preposition ambiguities (see Appendix).

If naive listeners can reliably separate phonetically and structurally ambiguous pairs, what is
the basis for this separation? In related work on the perception of prosodic information, trained
phoneticians labeled the same sentences with an integer between zero and five inclusive between
every two words. These numbers, 'prosodic break indices,' encode the degree of prosodic decoupling
of neighboring words, the larger the number, the more of a gap or break between the words. We
found that we could label such break indices with good agreement within and across labelers. In
addition, we found that these indices quite often disambiguated the sentence pairs, as illustrated
below.

"s Marge 0 would 1 never 2 deal 0 in 2 any 0 guys

"* Marge 1 would 0 never 0 deal 3 in 0 any 0 guise

The break indices between 'deal' and 'in' provide a clear indication in this case whether the verb
is 'deal-i"' or just 'deal.' The larger of the two indices, 3, indicates that in that sentence, 'in' is not
tightly coupled with 'deal' and hence is not likely to be a particle.

So far we had established that naive listeners and trained listeners appear to be able to sepa-
rate such ambiguous sentence pairs on the basis of prosodic information. If we could extract such
information automatically perhaps we could make it available to a parser. We found a clue in an
effort to assess the phonetic ambiguity of the sentence pairs. We used SRI's DECIPHER speech
recognition system, constrained to recognize the correct string of words, to automatically label and
time-align the sentences used in the earlier referenced study. The DECIPHER system is particularly
well suited to this task because it can model and use very bushy pronunciation networks, accounting
for much more detail in pronunciation than other systems. This extra detail makes it better able
to time-align the sentences and is a stricter test of phonetic ambiguity. We used the DECIPHER
system (Weintraub et al. 1989) to label and time-align the speech, and verified that the sentences
were, by this measure as well as by the earlier perceptual verification, truly ambiguous phonetically.
This meant that the information separating the member of the pairs was not in the segmental infor-
mation, but in the suprasegmental information: duration, pitch and pausing. As a byproduct of the
labeling and time alignment, we noticed that the durations of the phones could be used to separate

members of the pairs. This was easy to see in phonetically ambiguous sentence pairs: normally the
structure of duration patterns is obscured by intrinsic duration of phones and the contextual effects

of neighboring phones. In the phonetically ambiguous pairs, there was no need to account for these
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effects in order to see the striking pattern in duration differences. If a human looking at the duration
patterns could reliably separate the members of the pairs, there was hope for creating an algorithm
to perform the task automatically. This task could not take advantage of such pairs, but would have
to face the problem of intrinsic phone duration.

Word break indices were generated automatically by normalizing phone duration according to
estimated mean and variance, and combining the average normalized duration factors of the final
syllable coda consonants with a pause factor. Let di = (d, - Ai)/la be the normalized duration of
the ith phoneme in the coda, where pi and oj are the mean and standard deviation of duration for

phone j. 4 is the duration (in ms) of the pause following the word, if any. A set of word break
indices are computed for all the words in a sentence as follows:

1 1  jdj+ 4p/70IA EA

The term 4/70 was actually hard-limited at 4, so as not to give pauses too much weight. The set A
includes all coda consonants, but not the vowel nucleus unless the syllable ends in a vowel. Although
the vowel nucleus provides some boundary cues, the lengthening associated with prominence can
be confounded with boundary lengthening and the algorithm was slightly more reliable without
using vowel nucleus information. These indices n are normalized over the sentence, assuming known

sentence boundaries, to range from zero to five (the scale used for the initial perceptual labeling).
The correlation coefficient between the hand-labeled break indices and the automatically generated
break indices was very good: 0.85.

3 Incorporating Prosody Into A Grammar

Thus far, we have shown that naive and trained listeners can rely on suprasegmental information
to separate ambiguous sentences, and we have shown that we can automatically extract information
that correlates well with the perceptual labels. It remains to be shown how such information can
be used by a parser. In order to do so we modified an already existing, and in fact reasonably large
grammar. The parser we use is the Core Language Engine developed at SRI in Cambridge (Alshawi
et al. 1988).

Much of the modification of the grammar is done automatically. The first thing is to systematically
change all the rules of the form A -- B C to be of the form A --* B Link C, where Link is a new
grammatical category, that of the prosodic break indices. Similarly all rules with more than two right
hand side elements need to have link nodes interleaved at every juncture: e.g., a rule A -- B C D is
changed into A -. B Link, C Link2 D.

Next, allowance must be made for empty nodes. It is common practice to have rules of the form

NP - e and PP -- e in order to handle wh-movement and relative clauses. These rules necessitate

the incorporation into the modified grammar of a rule Link -- e. Otherwise, a sentence such as a
wh-question will not parse because an empty node introduced by the grammar will either not be

preceded by a link, or not be followed by one.
The introduction of empty links needs to be constrained so as not to introduce spurious parses.

If the only place the empty NP or PP etc. could fit into the sentence is at the end, then the only

place the empty Link can go is right before it so there is no extra ambiguity introduced. However if

an empty wh.phrase could be posited at a place somewhere other than the end of the sentence, then

there is ambiguity as to whether it is preceded or followed by the empty link.

For instance, for the sentence, "What did you see - on Saturday?" the parser would find both of

the following possibilities:
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"* What L did L you L see L empty-NP empty-L on L Saturday?

"* What L did L you L see empty-L empty-NP L on L Saturday?

Hence the grammar must be made to automatically rule out half of these possibilities. This can be
done by constraining every empty link to be followed immediately by an empty wh-phrase, or a con-
stituent containing an empty wh-phrase on its left branch. It is fairly straightforward to incorporate

this into the routine that automatically modifies the grammar. The rule that introduces empty links

gives tliem a feaLure-value pair: einpiYy_,r&---y. The rules that introduce other empty constituents

are modified to add to the constituent the feature-value pair: trace-on-lefL-branch--y. The links zero
through five are given the feature-value pair emptyilink--n. The default value for trace.onJeft-branch
is set to n so that all words in the lexicon have that value. Rules of the form AO - A, Link, ... A,
are modified to insure that AO and A1 have the same value for the feature trace-on-left-branch. Addi-

tionally, if Linkj has empty-link=y then Ai+1 must have trace.onleft-branch=y. These modifications,
incorporated into the grammar-modifying routine, suffice to eliminate the spurious ambiguity.

4 Setting Grammar Parameters

Running the grammar through our procedure, to make the changes mentioned above, results in a

grammar that gets the same number of parses for a sentence with links as the old grammar would
have produced for the corresponding sentence without links.

In order to make use of the prosodic information we still need to make an additional important

change to the grammar: how does the grammar use this information? This area is a vast are:ý of

research. The present study shows the feasibility of one particular approach. In this initial endeavor,
we made the most conservative changes imaginable after examining the break indices on a set of

sentences. We changed the rule N -. N Link PP so that the value of the link must be between 0 and
2 inclusive (on a scale of 0-5) for the rule to apply. We made essentially the same change to the rule

for the construction verb plus particle, VP - V Link PP, except that the value of the link must, in
this case, be either 0 or 1.

After setting these two parameters we parsed each of the sentences in our corpus of 14 sentences,
and compared the number of parses to the number of parses obtained without benefit of prosodic

information. For half of the sentences, i.e., for one member of each of the sentence pairs, the number

of parses remained the same. For the other members of the pairs, the number of parses was reduced,

in many cases from two parses to one.
The actual sentences and labels are in the appendix. The incorporation of prosody resulted in

a reduction of about 25% in the number of parses found, as shoiwn in table 1. Parse times increase

about 37%.
In the study by Price et al., the sentences with more major breaks were more reliably identified

by the listeners. This is exactly what happens when we put these sentences through our parser too.

The large prosodic gap between a noun and a following preposition, or between a verb and a following

preposition provides exactly the type of information that our grammar can easily make use of to rule

out some readings. Conversely, a small prosodic gap does not provide a reliable way to tell which

two constituents combine. This coincides with Steedman's (1989) observation that syntactic units

do not tend to bridge major prosodic breaks.
We can construe the large break between two words, for example a verb and a preposition/particle,

as indicating that the two do not combine to form a new slightly larger constituent in which they are

sisters of each other. We cannot say that no two constituents may combine when they are separated

by a large gap, only that the two smallest possible constituents, i.e., the two words, may not combine.

A-30



parse parse
# parses # parses time time

sentence no tath no with
i.d. prosody prosody posody prosody
la 10 4 5.3 5.3
lb 10 10 5.3 7.7
2a 10 7 3.6 4.3
2b 10 10 3.6 4.0
3a 2 1 2.3 2.7
3b 2 2 2.3 3.7
4a 2 1 3.2 4.7
4b 2 2 3.2 5.5
5a 2 1 1.7 2.5
5b 2 2 1.6 2.9
6a 2 1 2.5 2.8
6b 2 2 2.5 4.1
7a 2 1 0.8 1.3
7b 2 2 0.8 1.5

TOTAL 60 46 38.7 53.0

Table 1: The number of parses and parse times (in seconds) with and without the use of prosodic
information.

To do the converse with small gaps and larger phrases simply does not work. There are cases
where there is a small gap between two phrases that are joined together. For example there can be a
small gap between the subject NP of a sentence and the main VP, yet we do not want to say that the
two words on either side of the juncture must form a constituent, e.g., the head noun and auxiliary
verb.

The fact that parse times increase is due to the way in which prosodic information is incorporated
into the text. The parser does a certain amount of work for each word, and the effect of adding break
indices to the sentence is essentially to double the number of words that the parser must process.
We expect that this overhead will constitute a less significant percentage of the parse time as the
input sentences become more complex. We also hope to be able to reduce this overhead with a better
understanding of the use of prosodic information and how it interacts with the parsing of spoken
language.

5 Corroboration From Other Data

After devising our strategy, changing the grammar and lexicon, running our corpus through the
parser, and tabulating our results, we looked at some new data that we had not considered before,
to get an idea of how well our methods would carry over. The new corpus we considered is from a
recording of a short radio news broadcast. This time the break indices were put into the transcript
by hand. There were twenty-two-places in the text where our attachment strategy would apply. In
eighteen of those, our strategy or a very slight modification of it, would work properly in ruling out
some incorrect parses and in not preventing the correct parse from being found. In the remaining
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four sentences, there seem to be other factors at work that we hope to be able to incorporate into
our system in the future. For instance it has been mentioned in other work that the length of a
prosodic phrase, as measured by the number of words or syllables it contains, may affect the location
of prosodic boundaries. We are encouraged by the fact that our strategy seems to work well in
eighteen out of twenty-two cases on the news broadcast corpus.

6 Conclusion

The sample of sentences used for this study is extremely small, and the principal test set used,
the phonetically ambiguous sentences, is not independent of the set used to develop our system.
We therefore do not want to make any exaggerated claims in interpreting our results. We believe
though, that we have found a promising and novel approach for incorporating prosodic information
into a natural language processing system. We have shown that some extremely common cases of
syntactic ambiguity can be resolved with prosodic information, and that grammars can be modified
to take advantage of prosodic information for improved parsing. We plan to test the algorithm for
generating prosodic break indices on a larger set of sentences by more talkers. Changing from speech
read by professional speakers to spontaneous speech from a variety of speakers will no doubt require
modification of our system along several dimensions. The next steps in this research will include:

"* Investigating further the relationship between prosody and syntax, including the different roles
of phrase breaks and prominences in marking syntactic structure,

"* Improving the prosodic labeling algorithm by incorporating intonation and syntactic/semantic
information,

"* Incorporating the automatically labeled information in the parser of the SRI Spoken -ninguage
System (Moore, Pereira and Murveit 1989),

"* Modeling the break indices statistically as a function of syntactic structure,

"* Speeding up the parser when using the prosodic information; the expectation is that pruning
out syntactic hypotheses that are incompatible with the prosodic pattern observed can both
improve accuracy and speed up the parser overall.
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8 Appendix

la. I I read 0 a 0 review 2 of 1 nasality 4 in 0 German.

lb. 10 read 2 a 1 review 1 of 0 nasality 1 in 0 German.

2a. Why 0 are 0 you 2 grinding 0 in 3 the 0 mud.

2b. Why 1 axe 0 you 2 grinding 3 in 0 the 1 mud.

3a. Raoul 2 murdered 1 the 0 man 4 with 0 a 1 gun.

3b. Raoul 1 murdered 3 the 0 man 1 with 0 a 0 gun.

4a. The 0 men I won 3 over 0 their 0 enemies.

4b. The 0 men 2 won 0 over 1 their 0 enemies.
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5a. Marge 1 would 0 never 0 deal 3 in 0 any 0 guise.

5b. Marge 0 would 1 never 2 deal 0 in 2 any 0 guys.

6a. Andrea 1 moved 1 the 0 bottle 3 under 0 the 0 bridge.

6b. Andrea 1 moved 3 the 0 bottle 1 under 0 the 0 bridge.

7a. They 0 may 0 wear 4 down 0 the 0 road.

7b. They 0 may 1 wear 0 down 2 the 0 road.
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Abstract is that across subjects. Individuals differ greatly in their
Spoken language systems for the near future will not language skills, in their problem solving skills, and in
handle all of English, but, rather, will be limited to a their attention spans. It is therefore important to sam-
domain-specific sub-language. Accurate modeling of the ple a variety of subjects from the relevant population.
sub-language will depend on analysis of domain-specific Individuals are also very adaptable. In many cases, it
data. Since no spoken language systems currently have may be easier to rely on subject adaptability than to try
a wide range of users, and since variability across users to find technological solutions. However, the dimensions
is expected to be large, we are simulating applications along which humans might adapt are largely unknown
in which a large population of potential users can be for spoken language interfaces. Thus, the simulations
sampled. The data resulting from the simulations can be provide us with a mechanism to test experimentally var-
used for system development and for system evaluation, ious interface strategies that may be appropriate for SLS
The application discussed here is the air travel domain technology as it develops.
using the Official Airline Guide (OAG) reformatted in a We describe here five experiments aimed at answering
relational structure. various questions about the interface. Our first exper-

This study assesses the effects of changes in the simu- iment, the only one reported here that was not based
lations on the speech and language of the experimental on a functional equivalent of the TI data collection sys-
subjects. These results are relevant to both the exper- tem, investigated the effect of a long set of instructions
imental conditions for data collection and the design of with examples compared to a shorter set with no ex-
the human interface for spoken language systems. We re- amples. The goal of this study was to investigate how
port here on five experiments: (1) the effect of longer in- much one "poisons the data" by using such examples.
structions with examples vs. shorter instructions, using The next four experiments were based on either a func-
our earlier data collection system, (2) a baseline experi- tional equivalent of the TI system, or a minor variation:
ment using a functional equivalent of the data collection 9 To serve as a baseline experiment to compare our
effort at Texas Instruments (TI), (3) the use of a more results to those of TI, and to serve as a control for
specific version of-the scenario used in the baseline ex- the other experiments, we collected data in a fashion
periment, (4) the use of a short, simple familiarization that imitated the TI system as much as possible.
scenario before the main scenario, and (5) in addition
to the short familiarization scenario, the use of a finite w To investigate the effects on yield that might resultvocabulary with rejection of sentences with extra-lexical when subjects interpret what a vague scenario might
items. mean, we modified the scenario to fill in details thatwere unspecified in the original.

To investigate the first session effect, which was

Introduction large in our earlier work, we used a simple, short

The data reported here are part of an endeavor whose (about 5-minute) familiarization scenario.

goal is to design an appropriate human-machine inter- * To investigate how well subjects might adapt to a
face by examining various parameters in a simulated in- fixed vocabulary, we used a short familiarization sce-
teraction involving air travel planning. The design of nario, gave subjects a list of about 1000 words, and
the system is such that either a spoken language system gave error messages for utterances with words not
(SLS) or a simulation of one can be inserted between on that list.
the user and the relational database version of the Offi-
cial Airline Guide data for North American flights and
fares. In this way we can gather data for development Data Collection Conditions
and evaluation of both the SLS and the user interface. Except for the first experiment, which was carried out

Perhaps the greatest source of variability in the system- before the functional equivalent of the TI data collection
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system had been completed, our aim was to imitate as For the word counts, we used the .ili files (see [21),
well as we could the system used by TI for data collec- and used functions to reformat the data so that, for ex-
tion. In particular, we have used the same data from ample "845" would count as three words rather than
OAG formatted in the same relational structure; the one. Other, similar changes were made to regularize the
same tool for the "wizard" (NLParse) and accompanying spellings.
NLParse grammar; the same relational database (Ora-
cle) and interface to NLParse; the same set of tools for
communication among subject, wizard, and transcriber, Condition 0: Long Instructions
the same subject and experimenter instructions; and the
same formatting of tables and other objects displayed on This coadition is the only one tht is not basd on the
the screens (controlled by Oracle). We used only one of TI data •in ection system; it is based on the system de-
TI's scenarios, planning a family reunion involving fam- scribed in o. We describe it briefly here since the results
ily members of various types. were part of the motivation for the two training condi-

Our data collection differed from that of TI in a few tions described below.
ways that we felt were either unavoidable or unimpor- This experiment teated the effect of subject instruc-

tant for the resulting data. We are aware of the follow- tions on the language produced by the subjects. Two
ing differences: our A/D system uses a NEXT machine; sets of instructions were used: one that included ten
our push-to-talk mechanism writes out a time stamp for grammatical and parsable utterances as examples, and

push and for release (this allows us to calculate the time one that included no examples. In all other respects they

spent speaking, waiting for an answer and thinking be- were identical. Based on previous work, we expected a

fore making the next query, which the TI system does large i"ct of experience with the system, so subjects

not allow); instead of the color coding used by TI, we were asked to perform two tasks, and performance was

use a "ready" prompt when the system is ready to ac- compared across the two tasks as well as between the two

cept speech, a "listening" prompt when the subject is sets of instructions. 208z We found a strong interaction

pushing the mouse button, and a "processing" prompt between the type of instructions given and the amount of

after the subject releases the button and before the an- experience the subject had with the system; that is, on a

swer is sent. We offered a free "DECIPHER" T-shirt to subject's first task, those who received long instructions

participants in an experimental session. behaved like the more experienced, second-task subjects
on the measures used in the previous study. They also
used more complete sentences and did not show the pat-

Data Analysis tern of short, choppy, telegraphic speech demonstrated
traain-sby the subjects who received a short set of instructions.

Each session was timed from beginning to end, the train- It is possible, then, to affect the speech the subject ad-
ing scenarios were timed, and the delay until the sub- dresses to an SLS by providing examples. It is impor-
ject initiated the first utterance was timed. The num- tant to note that the effects of longer instructions and
bers of words and utterances produced per session were additional experience with the system were not additive:
counted, as were the numbers of words and utterances new users appear to need either detailed instructions or
produced during the training scenario. A time stamp additional practice time but not both.
was automatically recorded each time the sLbject used The data collected in this experiment was different in
the push-to-talk button, each time a transcription was important ways from data collected and reported by TI.
sent, and each time a response was sent to the subject's The sentences, especially those produced by subjects not
screen. This allowed us to determine the average time given examples, were shorter (an average number of 7.4
the subject took after receiving an answer and before words per utterance compared to about 12 for the TI
formulating a query (thinking time), the average time data). However, due to the many differences between
the subject held down the push-to-talk button (speaking this interface and that used by TI, it was impossible to
time), and the average time it took the wizard and the reliably attribute these differences to any specific causes.
wizard's assistant to send the transcription and database We therefore designed a series of minor modifications of
response to the subject's screen (subject waiting time). the TI version, as described below.
The average number of words per utterance, the average
vocabulary size per subject, and the number of sentences
outside the restricted vocabulary used in the Fixed Vo-
cabulary Condition were counted. We also counted the Coidition 1: TI Equivalent
number of cancellations subjects used per session, and The goal of the 'Tr' Condition was to establish that

the number of error messages sent. After the session, all our data collection system w'ns a functional equivalent

subjects filled out an eleven-item questionnaire designed of the TI system, and then to serve as a baseline for the

to assess their subjective impressions of the system and subsequent conditions. We tried to conform as closely as

their satisfaction with their interaction with the system. possible to TI's methods, physical setup and materials.

Analyses of these measures were completed for the ten In this condition, subjects were read a set of instructions

subjects in each of the four conditions that were based identical to the instructions used by TI, the task they

on the TI data collection system. were asked to perform was one of the TI scenarios, and
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_TT___ SRJ-TI J dition, was more specific. Instead of leaving the inter-
No. utterances 26.2 23.5 pretation of certain aspects of the task to the subjects

(for instance, find a flight for a person with an "adven-
No. words 305 298 turous" lifestyle), we set explicit constraints (find an air-

plane that holds the fewest number of passengers). In
Words/utterance 11.6 12.7 addition, instead of choosing any citi-s from the database

to complete the task, subjects were assigned the origin
No. unique words/subj. 83 81 and destination cities. Each of the ten subjects in this

condition used a different set of four cities, determined
No. unique words/cond. 286 296 randomly from the set of cities in the database. In all

other aspects, this condition was identical to the previ-
Time between utterances 90 sec. 89 sec. ous condition.

We found no significant differences on any of our mea-
sures between the subjects in our TI Condition and our

Table 1: SRI-TI Condition Compared with TI Data Task Specificity Condition. It may be that any bene-
fits gained by subjects not being required to fill in the
details themselves were offset by the fact that assigning

the wizard was familiar with NLParse and had practiced, random cities does not work as well as when subjects
using the transcription and query data released by TI. pick the cities themselves. For example, several of our

The data from our TI Condition seems to match TI's subjects had difficulties because they did not realize that
released data very well. As shown in Table I, the various Dallas and Fort Worth shared an airport. Subjectively,
measures made are all very similar, however, it did appear that subjects completed the as-

Perhaps the most striking difference between TI's data signed task, whereas in the TI Condition, many subjects
and SRI's in the TI Condition appeared in an analysis gave up or quit before fulfilling the various parts of the
of word frequency. We were astonished that the frequen- task required by the scenario. We are working to develop
cies were so different for "show" (75 occurrences in TI's objective measures of this subjective impression of the
data vs. 8 in ours). Similar discrepancies showed up for "dialogue" quality of the collected utterances.
the words "me", "nonstop" and "flights". We then real-
ized that the sentence used by TI as an example demon-
strating the use of the mouse and the formatting of the Condition 3: Familiarization
tables, "Show me all the nonstop flights from Atlanta
to Philadelphia", had a profound effect on the result- Our past data colection efforts showed a large effect of
ing data (though, of course, these utterances from each user experience in human-human interactions and in ex-
speaker were not used in the analysis). In our data col- perimental human-machine interactions [1]. In both con-lection, we asked the subject to read the first sentence ditions, the more domain-experienced speakers produced
of the scenario while we verified the recording procedure fewer words, fewer false starts and fewer filler words thanand demonstrated the push-to-talk buttong did the less-experienced speakers. In addition, subjectselicited fewer error messages in their second scenarios

compared to their first. Further, the dramatic effect of
one sentence read by all subjects at TI shows -just how

Condition 2: Task Specificity adaptable subjects can be, at least in an initial session.
We found, in examining both data released by TI and In the "Familiarization Condition", after reading the
our own data in the TI Condition, that it was often hard same instructions as in the other conditions, the exper-
to tell how a subject had interpreted a given task, and imenter stayed in the room with the subject and an-
even which task was being performed. The data could swered any questions the subject had in finding a single
be more valuable if we could ascertain whether and how one-way flight between San Francisco and Dallas. The
well the subject completed the task. We also thought experimenter responded to questions including those re-
that subjects would be more cooperative and the task garding the kind of requests the system could handle,
would be more realistic if they were concentrating on the kind of information in the database, and the push-
solving the task rather than on exploring the limits of to-talk button. The experimenter also provided possible
the system. In addition, we suspected that some time explanations for any error messages the subject received
migL, be wasted while the subject tries to figure out during the training scenario. The familiarization sce-
what the task is. nario remained constant across all subjects, although the

To eliminate the effect of individual interpretation of scenarios that constituted the main task varied among
the task and to standardize the task across all subjects, subjects as described in the Task Specificity Condition
we ran a "Specific Task" Condition. In this condition, above. The average length of a training scenario was
subjects were given the same instructions as in our TI 6.57 minutes.
Condition. The task they were asked to perform, how- Among the various conditions we ran, the largest ef-
ever, while structurally the same as the tasks performed fect by far was that of the familiarization scenario. As
by-TI's subjects and by our own subjects in the TI Con- shown in Table 2, subjects who used familiarization sce-
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No With Unique I1
Familiarization Familiarization words/subject 81 89 83 67

Task time 40 miin. 23 mn.
Unique

Utterances/Task 24 17 words/condition 296 344 270 219

Words/Task 276 146 Extralexical items,
No. words 66 80 61 0

Words/Utterance 12.2 8.7
Extra-lexical items,

Format queries 25% 13% No. sentences 74 205 138 0
(percent sentences) (31) (81) (87) (0)

Errors 3.9 1.2
Vocabulary errors 0 0 0 3.8

Cancellations 3.8 1.6
Other errors 3.7 4.2 1.8 0.6

Thinking time 46 sec. 34 sec.
Task Time

Speaking time 8.2 sec. 6.9 sec. (min) 37 43 22 24

Waiting time 42 sec. 39 sec.
Table 3: Comparison of Conditiou i (SRI-TI), 2 (Task

Table 2: Comparison of Conditions with and without Specificity), 3 (Familiarization Scenario), and 4 (Finite
Familiarization Scenario Vocabulary).

narios took significantly less time to complete the main
task (23.2 vs. 39.9 minutes, p < .01) and used signuif- vocabulary, they were sent the message: 'You have used
icantly fewer words to complete the task (276 vs. 146, a word outside the system's vocabulary. Try rephrasing
p < .01) than subjects in the other two conditions. The your request." In all other respects, this "Fixed Vocabu-
difference between the number of utterances produced lay" Condition was identical to the Familiarization Con-
by the two groups was not significant, however (24.4 vs. dition (i.e., subjects in this condition were given a famil-
17.2, p > .05), while the number of words per ut- iarization scenario and performed a constrained task).
terance used by subjects in the training conditions was If we compare the subjects who received a familiar-
fewer (8.7 vs. 12.2, p < .01). Subjects in the familiar- ization scenario but were unlimited in vocabulary and
ization conditions also received fewer error messages per those who received a familiarization scenario but were
utterance produced (.07 vs. .13) and asked fewer ques- limited to a 1000-word vocabulary, we find that the er-
tions concerning the meanings of table headings (13% of ror messages received by the latter group for using out-
all queries, compared to 25% for subjects with no famil- of-vocabulary items is higher. During the familiariza-
iarization scenario). tion session, they received an average of 2.0 error mes-

sages of this kind, and an average of 3.8 messages of this
kind for the main task. When added to the other error

Condition 4: Finite Vocabulary messages they received, this gave them a slightly higher
Earlier work concerning the vocabulary used by sub- number of total error messages received than subjects

jects and the percent of new words introduced in in the comparable but unlimited-vocabulary condition
each session suggested that expert human-machine users (4.4 vs. 1.8). The mean number of error messages re-
could potentially adapt to a restricted vocabulary and ceived by the group was not, however, different from the
still maintain efficiency [1]. In order to test whether sub- mean number of error messages received by subjects in
jects would adapt to a restricted vocabulary, we slightly either of the non-familiarization scenario conditions. In
modified our system to accept only a limited vocabu- addition, there is evidence for the adaptation of sub-
lazy from the subjects. The wizard's assistant, instead jects to a fixed vocabulary as indicated in Table 3. This
of being provided with a normal spell-checker, used a table indicates that with a short familiarization session
spell-checker that contained only a subset of approxi- and consistent feedback one can dramatically affect the
mately 1000 most frequently used words, based on the number of unique words used by the subject, the num-
data released by TI in distributions 1-4 (prepilot data ber outside a fixed set, and the number of sentences with
plus NIST Release 1). Subjects were made aware of this such "extra-lexical" items, without increasing the total
restriction in the instructions and were provided with a time to complete the task. The discrepancies between
list of acceptable words. If they used a word outside the the number of "extra-lexical" items and the number of
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sentences in which they occur arise because some sub- after the session. The subjective experience of the sub-
jects will use a given lexical item in many subsequent jects in the various conditions, then, seems to have been
sentences once it has "worked". about the same.

The goals of designing an appropriate spoken language
system can sometimes conflict with the goal of collect-

Discussion ing data for evaluation of spoken database queries. That

In addition to replicating the results released by TI, us- is, some major causes of errors (e.g., out-of-vocabulary

ing a setup similar to TI's, we have shown the effect of items, out-of-domain queries) may disappear with a

altering various aspects of the experimental setup, in- small amount of either detailed instruction or subject
eluding scenario specificity, subject familiarization and familiarization. However, we are convinced that it is
restricting the vocabulary, possible to find ways of coordinating the two endeavors.

We believe that our results indicate that we have suc- For example, the needs of both dialogue analysis and

ceeded in implementing a functional equivalent of the of query-answer pairs for evaluation can be met using a

TI data collection system. The one major exception to more specific scenario; the needs of restricted vocabulary

this claim is the observed discrepancy in the word fre- can be met by providing consistent feedback; .and the

quency distributions. This discrepancy can be remedied large effect of subject familiarization can be addressed

by avoiding any sample sentences from the domain while by spending a short time in the room with the subject

instructing subjects. to answer questions as the subject works on a task.

In assessing scenario specificity, we found no differ- We plan to ontinue these experiments to help us de-
ences on either yield measures (time to complete task, sipn an appropriate human-machine interface. In our

utterances per task, words per task, etc.) or on quality next set of experiments we will include a revised gram-

measures (error message rates, cancellation rates) be- mar for NLParse that reduces the number of words the

tween subjects in the unconstrained task condition and wizard needs to produce by about 35% (on "cheapest"

those in the constrained (specific) task condition. In constructions it can reduce the number of words to about

light of this, one might argue for adopting specific sce- a quarter of the number that would be needed without

narios on the basis of the benefits gained by knowing the modification). Other experiments we are planning

subjects are interpreting the task the same way (in ef- include the reformatting of tables sent by Oracle (the

fect, are performing the same task) and by obtaining high percentage of queries concerning the meanings of
data useful for both analysis of isolated queries and of various column headings indicate that much could be
dialoguef done to improve the user interface in this area), and

Our most significant results pertain to subject famil- some variations on the use of push-to-talk mechanism.

iarization. In two separate experiments using two very We will also be running repeat subjects to test the effect

different interfaces and procedures, we demonstrated the of longer use of the system on the resulting data.

impact of subject familiarization with the system: sub-
jects less familiar with the system produced longer ut-
terances, needed more time to complete the task, and Acknowledgements
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ABSTRACT from the corpus. The utterances tended to be short and

direct (3.3 seconds long, on average). No pause fillers (uh.
We describe three analyses on the effects of spontaneous urn). false starts, repairs, or excessively long pauses
speech on the recognition of continuous speech. We have occurred. The speakers were able to concentrate on speech
found that: (I) spontaneous-speech effects significantly production. rather than query formation or problem solv-
degrade recognition performance, (2)fluent spontaneous ing. Furthermore, the training and testing texts were gener-
speech yields word accuracies equivalent to read speech, ated using a fixed vocabulary, and with the same, known
and (3) using spontaneous-speech training data can signifi- language model, which quite adequately represented the

cantly improve performance for recognizing spontaneous source and target languages.
speech. We conclude that word accuracy can be improved The speaking style typically exhibited in the ATIS domain
by explicitly modeling spontaneous effects in the recog- differs from that in the RM domain in all of the above
nizer and by using as much spontaneous speech training aspects. The speaking rate is highly inconsistent, within
data as possible. Inclusion of read-speech training data, utterances, across utterances within a session, and across
even within the task domain, does not significantly improve sessions and speakers. The articulation is highly variable.
performance, with stressed forms of function words and reduced forms of

content words typically not observed in read speech. The
sentence lengths vary widely and are typically longer than

1. INTRODUCTION RM sentences (7.5 seconds long, on average). Some words
in ATIS sentences may not exist in the recognizer's lexi-

Recognition of spontaneous speech is an important feature con, and an appropriate language model must be devel-
of database-query spoken-language systems (SLS). How- oped.
ever, most speech recognition research has focused on
acoustic and language modeling developed for recognition Most important, however. ATIS speech contains spontane-
of read speech [1]. Read speech has been used extensively ous effects and disfluencies: filled pauses, stressed or
in the past for both training and testing speech recognition lengthened function words, false-starts and self-edits. word
systems because it is significantly less expensive to collect fragments, breaths, long pauses. and extraneous noises
than spontaneous speech, and because the lexical and syn- such as paper rustling and beeps. Data collected using sys-
tactic content of the data can be controlled. tems containing automatic speech recognition and natural

language components contain frequent occurrences of
The multisite data collection effort (3] has provided a chal- hyperarticulated words, elicited by the subjects in an
lenging corpus for research and development in the Airline attempt to overcome recognition or understanding errors
Travel Information System (ATIS) domain. We have [5]. Additionally, the data nave been collected in normal
observed a significant increase in word error rate compared office conditions (rather than in a soundproof booth), and
to the previous task domain, the read-speech naval recording quality and conditions vary across sites [3].
Resource Management (RM) task [2,6]. Word error rates
for RM systems have typically been in the 5% range,
whereas ATIS word error rates have exceeded 10% [4], for 2. ERROR ANALYSIS
comparable perplexities.

The speaking style typically exhibited in the RM domain We begin by analyzing the errors that occurred in the Feb-
had a very consistent rate and articulation, within and ruary 1991 evaluation set of 148 Class-A sentences, for
across sentences, and across speakers. There were no dis- which our word error rate exceeded 18%. These sentences
fluencies, such as word fragments. hesitations, or self-edits, are examined because they are believed to be a particularly
since utterances containing these effects were removed difficult sample of ATIS speech.
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Phonetic alignments were automatically generated corre- We found that the pnmary difference in error rates between
sponding to both the reference and recognized word stnngs, the read and spontaneous test sets was due drectly to di sflu-
and each utterance was listened to very carefully. We corn- encies in the spontaneous speech (Table 2). Nondisflueni
pared the acoustic and language model scores, and made a spontaneous speech had the same error rate as read speech.
subjective judgment as to the likely source of the error (the The disfluencies include pause-fillers, word fragments.
acoustic model, the language model, the articulation quality overly lengthened or overly stressed function words, self-
of the segment, or other effects such as breaths, out-of- edits, mispronunciations. and overly long pauses. This list
vocabulary words, or extraneous noise), of disfluency types is derived from the special markings

used in the SRO transcriptions. The observation that the
We found that 30% of the errors (Table I) could be attrib- nondisfluent spontaneous-speech error rate approaches the
uted to poor articulation or poorly modeled articulation read-speech error rate is consistent with the fact that the test
(usually reductions, emphatic stress, or speaking-rate vania- speech much more closely resembles the training data. The
tions); 20% were due to out-of-vocabulary words or poor utterances in the training data were fluently and consistently
bigrarn probabilities; 20% were due to unmodeled pause- articulated. just as was the nondisfluent spontaneous test
fillers (uh, urm, breaths). The remaining 30% could not be utterances.
attributed to any of the above, but were probably due to
inadequate acoustic-phonetic modeling.

Nurnber of Word
We see that 70% of the errors are due to effects observed in Characteristic Error

the ATIS domain, but not in the RM domain. If these errors Sentences Error

were removed, we would approach an error rate typically Read 241 33%
seen in a comparable RM system (with a perplexity 60 .......
word-pair grammar). Spontaneous 241 43%

Corpus Cause for Error Portion 1.Spontaneous - Disfluen 97 56%

, Spontaneous - Fluent 144 32%
Poor Articulation 30%

ATIS only Table 2: Error rate versus speaking style. Read speech
Vocabulary and Grammar 20% and fluent spontaneous speech have roughly equivalent

Pause Fillers 20% error rates.

ATIS and RM Other 30% The breakdown of error rate versus disfluency type (Table
3) shows that a significant portion of the errors were due to

Table 1: Summary of error sources for the Class-A filled pauses, long pauses, lengthenings, and stress. Sen-
Feb91 ATIS evaluation set (148 sentences). tences with these disfluencies had twice the word error rate

of fluent speech. The filled-pause errors happened because
there were no models for breath/uh/tmn events in this paric-

3. READ VS. SPONTANEOUS SPEECH ular recognizer's lexicon. The stress and lengthening errors
happened (most likely) because of the lack of sufficient

To determine the impact of spontaneous versus read speak- observations of these events in the training data. and
because of the lack of explicit models for these effects. Theing styles on rcognition performance given a fixed training long pauses usually caused insertions within the pause

condition, we constructed a recognition experiment with regions neighboring the phrase-initial and phrase-final
two test sets. The first set contained spontaneous speech words.
utterances; the second set contained read versions of those
same utterances, given later by the same subjects. From these observations, we conclude that more training

data containing these effects would improve the matchThe training data consisted ofPM. TIMIT, and pilot-corpus between the acoustic models and the spontaneous test
ATIS utterances (with the read-spontaneous and spontane- speech, and therefore would improve the recognition per-
ous test data held out). This left rather little ATIS-shecific formance. Furthermore, these effects should be explicitly
data for training, almost none of it spontaneous. The recog- modeled in the recognizer's lexicon, once sufficient training
rntion was run without a grammar (perplexity 1025) to data are obtained. However, this process depends on the
remove any corrective effects of the grammar. so that only reliability of the SRO labeling across sites, which tends to
the acoustic effect of the spontaneous speech could be eval- be subjective and inconsistent.

uated. The spontaneous test sentences were categorized as besubectivandnconsstent

either fluent or disfluent based on the existence of special
markings in their corresponding SRO0 files. *The SRO transcription contains a detailed

description of all the acoustic events occumng in
an utterance.
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Recognition was conducted using a development lest-set of
447 spontaneous MADCOW utterances [3]. with a perplex-
ity 20 bigram grammar trained on all the available sponta-

Disfluency Number of Disfluency neous speech transcriptions (roughly 10,000 sentences). All
Type Sents Causes Error of the experiments outlined below use discrete-distnbution

hidden Markov models (HMMs), and every training set
Self-Edit 7 71% combination includes the 800 breath utterances.

Filled Pause 24 92% Using all the available ATIS and MADCOW data yielded a
system with a word error rate of 9.6% (Table 5). Using only

Long Pause 17 94% spontaneous AIlS speech reduced performance by only 6%.
to 10.2% word error. Training with a roughly equivalentLengthening 36 81% quantity of read ATIS speech increased the error rate signif-

Stress 22 59% icanrly, by 58% to 15.2%. This suggests dta having training
_.......... data that are consistent in speaking mode with the test data

Mispronunciation 2 100% can significantly improve performance. However, the effect
of lexical and phonetic coverage in the training sets might

Fragment 5 100% be a factor in causing this performance difference. This
issue is discussed in Section 5.

Table 3: Number of sentences afflicted with each dis-
fluency type, and the percentage of occurrences where the
disfluency causes an error. Training SetJ Size Error

ATIS-Read 8.732 152%
4. TRAINING DATA VARIATIONS ATIS-Spontaneous 7,545 10.2%

Further evidence for the importance of modeling spontane- ATIS-AI! 15,477 9.6%
ous-speech phenomena is found by manipulating the con-
tent of the training data sets that are used for acoustic- Table S: Trairnig set variations for ATIS-only systems,
phonetic modeling. In this experiment, we compare the per- showing how speaking-mode-consistent data improves per-
formance of spontaneous-speech recognition for different formance.
combinations of read, spontaneous, ATIS, and non-ATIS
training subsets. We also look at the impact of using non-ATIS read speech

The training subsets (Table 4) consist of the standard RM for additional training data (Table 6). Using successively
more training data gives the expected result, an improve-

and TIMIT training data, and read and spontaneous subdi- ment in performance. However, when using all the availablevisions of all the ATIS and MADCOW data available as of data (RM.l TIMIT, ATIS and MADCOW), the performance
October 1, 1991 . The "Breaths" corpus refers to an inter- matches that of the system trained exclusively on ATIS and

nally collected database of inhalations and exhalations, mtACOW data. Furthermore, the performance of the sys-

used to train a breath model, which is allowed to occur tern trained using all the avaijable read speech (16,922 sen-

optionally between words during recognition. Much of the tences) performed much worse than the system trained only

ATIS-read data were also collected internally at SRI. on portaneo uch (o4sentenes).on spontaneous speech (7.545 sentences).

Corpus Size Training Set Size Error

ATIS-Read 7,932 TIMIT 5,000 26.9%

ATIS-Spontaneous 6,745 TIMIT + RM 8,990 20.5%

"TIMIT 4,200 TIMIT + RM + ATIS-Read 16,922 14.6%

Resource Management 3,990 TI*NUl + RM + ATIS-AII 23,667 9.6%

Breaths 800 Table 6: Training set vanations using non-ATIS data.

Table 4: Training data subsets, which are combined showing a drop in the error rate when ATIS-read data are
in various ways to determine the impact of read and added, and a further drop when ATIS-spontaneous data are
spontaneous training data on recognition of spontaneous added
speech.
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We can conclude from these experiments that having speak- ucular context level will be generated by the DECIPHER
ing-mode-consistent training data is more important than trainer if there are sufficient data to train that model.
simply having a large quantity of training data. However,
we cannot be certain that the phonetic content of the AT1S-
spontaneous training set matches the development set better Model Type Context Level
than the ATIS-read training set. That issue is addressed in M pn
Section 5. Monophone I

We compared the errors of two different recognizers used Left-general biphone 2
on the same test set of spontaneous speech. Both recogniz-
ers were trained on a comparable number of utterances, but Right-generalbiphore 2
one recognizer was trained on read speech only (TIMIT+R- Left biphone 3
M+ATIS-Read), and the other on spontaneous speech only
(ATIS-Spontaneous). We found that substitutions of one Right biphone 3
function word for another form a significant portion of the
errors in both test sets, and in roughly the same proportions. General tnphone 4
However, there were significantly fewer substitutions of
content words for other content words for the recognizer Left-general triphone 5
trained on spontaneous speech than for the recognizer
trained on read speech. Right-general tmphone 5

Similarly, the recognizer trained on spontaneous speech Tniphone 6
manifested significantly fewer errors in substitution of a
pause filler for a function word. Homophone errors, which Word-specific 7
can lead to understanding errors, formed a significant por- Table 7: Assignments of an integer-valued context
tion of the errors in the recognizer trained on read speech, level to each context-dependent model type. Modelsalthough almost none of these appeared for the recognizer with increasing detail are assigned higher context level
trained on spontaneous speech. We believe that this is
because many words that can be homophonous in read values.
speech ("for " "four" and "to" "two", for example) are no
longer homophones in spontaneous speech ("fer" "four" The expectation is that the higher the average context level
and "tuh" "two"). encountered during recognition, the better the performance.

This trend is indeed captured in Table 8, where the system
with the least task-specific training data (TIMIT) had the

5. Phonetic Coverage Analysis least average context level (and the lowest performance).
and the system with the most training data (TINfT+R.Mi+

One potential reason for the dramatic performance varia- ATIS-tI) had the highest average context level (and the

uons could be that the phonetic content of the development highest performance).
test set is better covered by the ATIS-Spontaneous subset The important point is that the average context level of the
than by the ATIS-Read subset. In this section, we attempt to best-trained read speech system (TIM!T+RM+ATIS-Read)
disprove that theory, giving further strength to the argument was roughly equal to that of the best spontaneous-only sys-
that speaking-mode consistency is the primary factor affect- tem (ATIS-Spontaneous), but the error rate was signifi-
ing performance. cantly higher (14.6% versus 10.2%, respectively). This
We reason that the more detailed (more context-dependent) suggests that although models of equivalent detail are beingWac sponthatthe moredelstailed (re cvailablefontext-deiend e used for recognition, the performance difference is due toacoustic-phonetic models there are available for testing. the the spontaneous speaking mode of the training set. which is
more adequate the training data have been in representing consistent with the speaking mode of the trest set.

this dimension (the better the phonetic coverage). There-
fore, for this analysis, we determine the average context
level (or detail) of HMM states that each frame of test data
visits during recognition. The average is computed by
assigning an integer-valued number to each model type
(increasing as context level increases), then computing the
percentage of all frames of data visiting states correspond-
ing to a particular level of context.

The series of context-dependent model types used in the
DECIPHER system is listed in Table 7. A model with a par-
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DARPA Speech and Natural Language Workshop. R. Stem
(ad.), Morgan Kaufmann. 1990.

Error Context 3. MADCOW,"Multi-Sue Data Collection for a Spoken Lan-
Rate Level guage System," Proc. DARPA Speech and Natural Lan

guage Workshop. M. Marcus (od.), Morgan Kaufmann.

TIMIT+RM+ATIS-AII 9.6% 6.31 1992.

ATIS-All 9.6% 6.26 4. H. Murveit, J. Butzberger, and M. Weintraub. -Perfor-

mance of SRI's DECIPHER Speech Recognition Systems

ATIS-Spontaneous 10.2% 6.03 on DARPA's ATIS Task," Proc. DARPA Speech and ,atu
rat Language Workshop. M. Marcus (ad.). Mcrgan Kauf-

TIMIT+RM+ATIS-Read 14.6% 6.14 mann. 1992.

ATIS-Read 15.2% 5.96 5. E. Shriberg, E. Wade, and P. Price. "Human-Machmne Prob-
.em Solving Using Spoken Language Systems (SLS): Fac-

TIMIT+RM 20.5% 5.06 tors Affecting Performance and User Satzsfac:.on," Proc.
TIMIfT 26.9% 4.56 DARPA Speech and Natural Language Workshop. M. Mar-

I_ cus (ad.), Morgan Kaufmann, 1992.

Table 8: Context level versus word error, indicat- 6. H. Murveit, J. Butzberger. and M. Weintraub. "S,.ech
ing that despite similar model detail (context level), the Recognition in SRI's Resource Management and ATIS
spontaneous-speech-trained system significantly out- Systems," Proc. DARPA Speech and Natural Language
performs the best read-speech-trained system. Workshop, P Price (ed.). Morgan Kaufrmann. :991.

6. CONCLUSION

These studies have convinced us of the importance of using
as much spontaneous speech material as possible in training
our system. Furthermore, we have found that spontaneous
speech effects can significantly degrade recognition perfor-
mance. although fluent spontaneous speech yields word
accuracies equivalent to those of read speech.

Word accuracy can be improved by using as much sponta-
neous-speech training data as possible, and by explicitly
modeling such effects in the recognizer's lexicon (such as
optional interword breath and pause-filler models). Inclu-
sion of read-speech training data did not significantly
improve performance, given that the phonetic coverage of
the training sets were roughly equivalent.
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DECIPHER's front end samples an analog acoustic
signal 16,000 times per second after passing the signal

through a 6.4 Khz low-pass, anti-aliasing filter with 0.95

Ab~rstrt pre-emphasis. Signal analysis starts with a 512-point
discrete Fourier transform (DFT) calculated every 10 msec

DECIPHER is SRI's HIvM-based speaker- on a 25.6 msec Hamming window. Four discrete acoustic

independent continuous speech recognition system. DECI- features are calculated every 10 msec. The features are

PHER performs well on the speaker-independent DARPA based on a 13-dimensional cepstral transform of the loga-

resource management task, as described in last year's rithms of the energies in 25 overlapping filters (approxi-

ICASSP Proceedings 1101. To determine whether mately equally spaced on the mel scale) in the range from

speaker-specific acoustic and phonological adaptation can 100 Hz to 6400 Hz. An optional noise-robust spectral esti-

further improve performance, the current paper describes mation process is described in (61 in this volume.

DECIPHER's performance on a speaker-dependent task.

1. Introductionph
The Speech Research Program at SRI International

has designed and implemented several speech recognition
systems in the last six years. SRI's current large-
vocabulary, continuous-speech system, DECIPHER, is

based on P hidden Markov model (HMM) approach and
was designed to achieve high word accuracy in a speaker- Word
independent mode. It has been trained and tested on

DARPA's Resource Management database [19. The •MIN "

DECIPHER system was described at last year's ICASSP

meeting [101. That paper presented results showing that R A1!r 1-. - taw
speaker-independent recognition performance could be

improved by incorporating certain kinds of linguistic

knowledge into the Markov model framework, including The phonetic models in the DECIPHER system are

cross-word coarticulatory modeling and detailed modeling discrete density 3-state hidden-Markov models. There are

of phonological variation, four discrete densities per state, one for each of the four

This paper presents .the results of a series of experi- acoustic features produced by the front end. Word

ments that tested acoustic and phonological adaptation of models are directed graphs of phonetic models (combining

the DECIPHER system to the pronunciations of a single context-independent and context-dependent phonetic

speaker in a speaker-dependent task. models). The lexical graph for a vocabulary item is gen-
erated by the application of a set of phonological rules to
a baseform pronunciation (similar to previous efforts at
modeling multiple pronunciations [41). The modeling of

2. The DECIPHER System multiple pronunciations in the DECIPHER system differs

The DECIPHER system uses an HMM'framework from previous efforts in two important respects:

similar to that used in a number of other systems [2, 7, [1[ A new technique for developing phonological rule sets

81. The overall structure of such a system is well was used, with the goal of maximizing the coverage

described in [71. The overall structure of SRI's DECI- of the pronunciations found in a corpus of speech
PHER system is shown in Figure I. while minimizing the size of networks.
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[21 A new algorithm was used to estimate the probabili- databases for training recognition systems have too few

ties of alternate pronunciations. The new algorithm occurrences of all but the most frequent words to make

defines sub-word units which can share training data accurate estimates.

based on equivalence classes of nodes. In order to reliably estimate pronunciation probabili-

These two techniques are described in the following two ties for words which don't happen frequently enough to

se.tizns. provide adequate training dath,- it is necessary to tie
together sub-word units which do happen frequently.

3. Thus, reliable probabilities can be estimated for these
SDeveloping Phonological Rule Sets sub-word units, which can then be concatenated to form

Previous efforts to model multiple pronunciations or estimates for word pronunciations. Because extended con-
words have suffered because many new parameters were text can play an important role in determining the allo-
introduced which had to be estimated with a fixed phonic form of a segment in a word, we want to tie
amount of training data. The approach to rule set together the largest units possible that have adequate
development SRI uses has the goals of maximizing the training data, in order to capture the greatest amount of
coverage of observed forms in a corpus of speech while contextual information. We have developed an approach
minimizing the size of the networks, and therefore minim- which attempts to automatically determine the best
izing the number of parameters which need to be grouping of sub-word units into node-equivalence classes
estimated. for common training.

A number of software tools were developed which In the DECIPHER system, the training of pronuncia-
allow the measurement of the coverage of pronunciations tion probabilities is incorporated into the training of the
in a corpus as well as overgeneration (generation of HMM models using the forward-backward algorithm.
pronunciations not used), both for a full rule set and for The forward-backward algorithm provides estimates of
the individual rules in a rule set. These tools can be used the number of transitions for each arc at the end of each
to optimize the definition of the contextual constraints of iteration through the training data. The estimated tran-
individual rules, as well as the choice of rules to include in sitions for arcs which correspond to arcs in pronunciation
a rule set. networks are used to reestimate pronunciation probabili-

The development of phonological rule sets proceeds ties allowing arcs to share training samples when they

as follows: occur in the same node-equivalence class, as defined above.

[01 Start with a lexicon of base forms, a corpus of We have shown improvements in speaker-
pronunciations, and (optionally) a phonological rule independent performance using the rule set development

set (i.e., we can start with an existing rule set and and node-equivalence class training techniques outlined

refine it, or start with just baseforms). above 1101. The next section reports the evaluation of

11] Measure coverage of output forms (resulting from the these techniques on a speaker-dependent database.

application of current rules, if any, to baseforms) on
observed pronunciations. Get diagnostic information
on uncovered pronunciations. 5. Speaker-Dependent Phonology

12] Write rules to cover pronunciations. A set of experiments were performed in which

131 Measure coverage and overgeneration of individual pronunciation models were adapted to individual speak-

rules. Analyze and refine contextual specifications of ers. Initially, each speaker started with a set of pronunci-

rules. Anaszed o ndividual ref e ontextuas at is o ation networks which resulted from the application of a
rules based on individual rule diagnostics. phonological rule set, developed using the method

(4] Repeat from step 1 to achieve high coverage rule set. described above, to a set of baseforms. The mean number

Using the method outlined above, we have been able of pronunciations represented per word with these net-
to develop a phonological rule set with significantly higher works was approximately 35. These networks were then
coverage and significantly lower overgeneration than rule trained separately for each speaker in the speaker-
sets developed by more traditional methods both at SRI dependent test set. The training set for each speaker
and elsewhere [31. included 600 read sentences (the DARPA speaker-

dependent resource management training set). Two itera-
tions of the forward-backward algorithm were run, and

4. Estimating the Probabilities of Alternative the node-equivalence class algorithm referred ti. above was
Pronunciations used to estimate speaker specific pronunciation probabili-

Previous efforts to model multiple pronunciations of ties for these networks. The networks were then pruned

words have suffered because the unlikely pronunciations by removing low probability arcs, using an algorithm that

(not previously modeled) caused false alarms. This was a includes constraints to prevent the creation of discon-

problem because the systems lacked accurate estimates of nected components of word networks and to avoid the

the probabilities of the many pronunciations modeled, creation of word models which can't connect to other

Achieving accurate estimates is difficult because current words due to cross-word phonological constraints. In
addition, node types with less than a specified minimum
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number of training instances were constrained so that 6. Discussion
only the most likely arc was left after pruning.

These pruned speaker-dependent word networks had TSe reults s honhesgiest that:
an average of approximately four pronunciations per 1 Speaker specific phonological training can improve
word. An additional two iterations of the forward- recognition performance, both for single and multiple

backward algorithm were then run in order to train the pronunciation systems.

acoustic HI-M models with the pruned speaker-dependent [2] Multiple pronunciation models can improve the per-
word networks. formance of a speaker-dependent system.

Tests were run with the DARPA 1000-word
resource-management database using both the DARPA In both cases, the improvements observed were small,
February 89 speaker-dependent test set and the 100- but consistent. A larger speaker-specific training set

speaker development set. The DARPA perplexity-60 would be likely to improve the results reported here.
word pair grammar was used. Results are shown in Table With a larger training set, bushier word networks could
I. The single networks were derived by pruning out all be used while maintaining the accuracy of the estimates of
but the single, most likely, path in all of the word net- pronunciation probabilities, as well as the estimates of the
works after training pronunciation probabilities using the acoustic parameters of the HMM models.
node-equivalence class training algorithm. The multiple All the results presented in this paper are based on
pronunciation networks were pruned, as described above, experiments that both trained and tested the DECIPHER
until there were an average of approximately four pronun- system on carefully collected, read speech. In the future.
ciations per word. Table I compares performance using we intend to evaluate these techniques on goal-directed,
networks with pronunciation probabilities based on a spontaneous speech. These techniques are iikely to
speaker-independent training set and a speaker-dependent become more important when DECIPHER is used with
training set. (Only the training and pruning of pronunci- spontaneous speech where there is significantly increased
ation networks was varied for these runs - in all cases the in phonological reduction and deletion. [1,51.
acoustic HMM models were trained speaker-dependently.)
Percent word correct was measured as References

insertions + deleiona +sijbstitutonj

total [I] Bernstein, J., Baldwin, G., Cohen, M., Murveit, H.
and Weintraub, M., "Phonological Studies for Speech

Recognition," Proceedings: DARPA Speech Recoynt-
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ABSTRACT The SLS program took shape with the definition of the Air-
line Travel Information System (ATIS) task. a database

The CSR (Connected Speec., Recognition) corpus represents a query task which supports research in both speech recogru-
new DARPA speech recognition technology development inia- tio0 and natural language The ATIS corpus (corpora) is
uve to advance the state of the art in CSR. This corpus essentially currently being collected to provide the experimental data
supersedes the now old Resource Management (RM) corpus that for developing SLS technology, This ATIS corpus exhibits
has fueled DARPA speech recognition technology development several desirable features regarding the speech recognition
for the past 5 years. The new CSR corpus supports research on problem that were found lacking in the RM corpus. These
major new problems including unlimited vocabulary, natural features are namely the use of spontaneous goal-directed
grammar, and spontaneous speech. This paper presents an over- speech and the consequent use of a natural grammar and an
view of the CSR corpus, reviews the definition and development open unrestncted vocabulary,
of the "CSR pilot corpus". and examines the dynamic challenge of
extending the CSR corpus to meet future needs. Although the ATIS corpus provides the kind of speech data

desired by the speech recognition research community and
OVERVIEW required to address important problems in the application

of speech recognition to real tasks. there is one unfortunate
Common speech corpus development and evaluation shortcoming of this corpus This is that the cost and effort
received major emphasis from the very beginning of the of collecting the data is too great to support the massive
DARPA speech recognition program. At that time, a set of data requirements for advances in speech recognition tech-
common corpora were defined to serve the needs of the nology. Some way of improving the efficiency and produc-
research community. This resulted in the development of tivity of data collection was needed in order to support
the TIMIT speech corpus. which was collected from a large further ,,Jvances in speech recognition technology This
number of subjects and intended to support basic research need was the primary motivation for the creation of the
in acoustic-phonetic recognition technology. The Resource CSR resea-ch initiative and its related CSR corpus.
Management (RM) corpus, collected from fewer subjects
but representing an application of interest to DARPA, pro- The CSR research initiative, along with the CSR corpus
vided the greatest focus of interest in technology through- development effort, ;a, created in order to provide better
out the research community. In the course of R&D using support for advances in the state of the art in large vocabu-
these two corpora. the first serious research and advances lary CSR. The primary focus in the CSR initiative has been
toward speaker-independent speech recogntion were on the design and development of a CSR speech corpus
achieved, which is required to fuel the research and through which

the research might be productively directed Primary objec-
Although the RM corpus served its intended purpose well, tives of the CSR cnrpus have been to increase the realism
technology advances came to make its limutations painfully of the speech data and at the same time to maximize the
obvious. The language was artificial and limited, the speech efficiency of collecting that data. Efficiency has been
was read and therefore unnatural, and the corpus corn- viewed as of paramount importance because it is generally
pletely avoided the central issue of understanding the believed that significant advances in speech recognition
meaning of the spoken utterances. In response to these lim- technology will require more comprehensive models of
itations and to rapid advances in the performance of speech speech and correspondingly more massive quantities of
recognition technology on this RM task. a new research iru- spech data with which to train them.
tiauve was formed by combining speech recognition and
natural language understanding tasks ii a spoken language Janet Baker was the principal champion and designer of the
system (SLS) program. CSR corpus. working as the chair of a CSR corpus design

committee. This committee dealt with a large and diverse
set of research interests and corpus needs. which made the
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task of designing a satisfactory corpus extremely difficult, opinion that such predetermined VP may not repre-
For example, the desire to collect spontaneous speech was sent realistic VP, may limit research on automatic
in direct opposition to the need to make corpus develop- punctuation. may restrict the task and perplexity,
ment efficient (because spontaneous speech requires a gen- may unduly burden the corpus with VP words, and
erally painstaking and expensive transcription task, may present a difficult and artificial reading task to
whereas read speech can be transcribed far more efficiently users. As a result, a compromise position was taken
and even largely automatically). I in which half of the corpus was collected in VP mode

Major Corpus Design Decisions and half in non-VP mode.

"Read speech versus spontaneous speech: On the Speaker-independence: Tne CSR corpus. although

issue of spontaneous speech, it was decided that the directed primarily toward speaker-independent rec-

majonty of the corpus (and in particular the majority og nition, also supports research into speaker depen-
of the training data) should be read speech. for eco- corp u o Apr at ey t wor
nomic reasons, whereas the majority of the test data rp pe
(which comprises a small fraction of the total data) Microphone independence! The pnmary microphone
should be spontaneous speech. The reason for these is the traditional Sennheiser model HMD-414 In
decisions is that it was felt that large amounts of read addition, all data were collected also with a second-
speech would provide greater training benefi:s than ary microphone. Previously, this second rrucrophone
smaller amounts of spontaneous speech. while using was a single far-field pick-up microphone, such as
spontaneous speech for testing would better validate the desktop Crown model PZM-6FS. The CSR pilot
the technology for a relatively small increase in cost. corpus represents a departure from this practice and a

"* Prompting text: Probably the most significant deci- first attempt at true microphone-independent recog-

sion regarding the CSR corpus was the decision to rution (in much the same spirt as speaker-indepen-

work initially with the Wall Street Journal (WSJ). dent recognon) by using one of many different

This decision was influenced by the richness of the microphones for the alternate (secondary) speech

WSJ language and by the existence of a preexisting channel.

and very large (50 million word) corpus of WSJ text - Transcription: For the CSR pilot corpus. the original
(as part of the ACL-DCI effort). ,-l of the read source text was preprocessed to produce a strng of
speech data is currently being collected using words that represented as well as practical the string
prompts derived from the WSJ. The spontaneous of words that would result from reading the source
speech data is being collected using a news reporting text. This word string was then presented to the sub-
dictation paradigm that simulates the WSJ dictation ject as the prompting text. This approach provided a
scenario.2  very efficient transcription mechanism, because the

"prompting text could automatically be used as the
mVerbalized punctu dicta fn tion. which is the transcription (except when the subject made errors in

nominal target application for the CSR technology reading) Also, the language model. although per-
development effort, dictation users typically say haps a bit unnatural to the extent that the prompt
pntctuation such as "comma" and "period" so as to string doesn't represent the statistics of the true lan-
aid mn the proper punctuation of the dictated docu- guage model. can be more easily and comprehen-
merit. Therefore, i order to improve the vensirnli- sively estimated by preprocessing large volumes of
tude of the CSR corpus, a strong opinion was voiced text rather than by transcribing relatively small
that such verbalized punctuation (VP) be included in amounts of speech data.
the prompting text. Opposed to this view was the

The CSR Corpus Coordinating Committee
I The design of the CSR pilot corpus is described The charter of the CSR Corpus Coordinating Committee

in detail in the paper by D_ Paul and J. Baker in (CCCC) is to coordinate CSR corpus development and to
this workshop's proceedings entitled "The Design resolve issues which arise in CSR corpus development and
for the Wali Street Journal-based CSR Corpus". evaluation. There are currently 12 members of the CCCC.
2. The spontaneous speech data collection effort is namely:
described in detail in the paper by J. Bernstein and
D. Danielson in this workshop's proceedings enti- Janet Baker, Dragon
tied "Spontaneous Speech Collection for the CSR Jordan Cohen. IDA
Corpus. George Doddington (chairman)
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Francis Kubala. BBN forming the formal performance evaluation
Dave Pallett, NIST ("EVALUATION TEST")
Doug Paul. Lincoln Labs The CSR February 1992 dry run evaluation
Mike Phillips. MIT
Michael Picheny, IBM The recommended baseline performance evaluaions were
Raja Rajasekaran, TI defined by selecuon of training data set(s), testing data
Xuedong Huang, CMU set(s), recogrution conditions (vocabulary and language
Mitch Weintraub, SRI model), and scoring conditions. In the course 9f discussion
Chin Lee, AT&T on these issues it became clear that consensus was not pos-

sible on deftntion of a single set of evaluation concdtions.
This committee was formed at the SLS coordinating corn- This was in additon to the distinct differences between
mittee meeting in October 1991. Since that Ume the corn- speaker-dependent (SD) and speaker-independent (SI) eval-
mittee has met ten times. mostly via teleconference. CCCC uauon data and conditions. Some committee members felt
activites have included: that there should be no constraint on training material, to

" Defintion of procedures for microphone gain adjust- allow as much freedom as possible to improve performance

merit and calibration, through training data. Others believed strongly that calibra-
tion of performance improvement was paramount and there-

"- Definition of procedures for transcribing the speech fore all sites should be required to use a single baseline set

data. of training data. In the end, the committee was able only to
identify a number of different training and test conditions as

"* Morntoring progress in speech data collection and "recommended" alternatives for a baseline evaluauon.
transcription. For training the recommended SI training corpus compnsed

"* Definition of the data distribution schedule and for- 7240 utterances from 84 speakers. The recommended SD
mat. training corpus comprised the 600 training sentences for

each of the 12 SD speakers- For the large-data speaker-
"- Defiiti on of procedures for evaluation of vocabu- dependent (LSD) training condition. the recommended SD

lary/speaker adaptive systems. training corpus comprised the 2400 training sentences for"ad each of the 3 LSD speakers.

"* Definitnon of procedures for scoring. For testing there were a total of 1200 SI test utterances and

"* Definition of recommended baseline performance 1120 SD test utterances. These data comprised. similarly
evaluations, and separately for SI and SD recognition. approximately

400 sentences constrained to a 5000-word vocabulary, 400
The CSR pilot corpus sentences unconstrained by vocabulary. 200 sentences of

spontaneous dictation, and these 200 sentences as read later
One of the primary motivations for creating the CSR task from a prompting text.
and corpus was to provide a sufficiently large corpus of data The vocabulary and language models used for the above-
to properly support advances in speech recognition technol- defined test sets were either unspecified (for the spontane-
ogy. This implies a very large effort, with many hundreds of ous and read versions of the spontaneous dictation), or were
hours of speech data being collected. Given the massive the 5000-word vocabu'ry and bigrarn grammar as supplied
effort required, and appreciating the untried nature of many by Dcug Paul from an analysis of the preprocessed WSJ
of the corpus parameters, it was decided that a pilot corpus corpus. (Actually, two different sets of bigrani model proba-
should be collected first to determine the correctness of the bilues were used. one modeling verbalized punctuation and
many corpus design decisions and to allow modifications of one modeling nonverbalized punctuation These two were
these as necessary. used appropriately for the verbalized and nonverbalized

The CSR pilot corpus is described in a companion paper in punctuation portions of the test sets, respectively.)
these proceedings entitled "The Design for the Wall Street Given the rather massive computational challenge of tran-
Journal-based CSR Corpus" by D. Paul and J. Baker. Tin s ing and testing in such a new recognution domain, with
corpus provides for the development and evaluation of both larger vocabulary and greater amount of test data. not all ofspeaker-independent (SI) and speaker-dependent (SD) rec- the test material was processed by all of the sites perform-
ognition. It uses the now-standard DARPA corpus approach ing evaluatort Also, because of the variety of trairnng and
of providing a three-part corpus: speech data for training evaluation conditions, few results were produced that could
the speech recognition system ("TRAINING"), speech data be compared across sites. Two test sets. however, were eval-
for developing and optinizing the recognition decision cri- uated on by more than a single site. Two sites produced
tena ("DEVELOPMENT TEST"), and speech data for per- results on the SD )000-word VP test set (Dragon and Lin-

coln). and three sites produced results on the SI 5000-word
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VP test set (CMU, Lincoln, and SRI). These results are
given in a companion paper on "CSR Pilot Corpus Perfor-
mance Evaluation" by David Pallett.

Future CSR corpus effort and issues

Several issues have been identified that bear on the CSR
corpus and on potential changes in the design of the corpus:

Verbalized punctuation. There is a significant argu-
merit to discontinue verbalized punctuation, for sev-
eral reasons: It doubles the number of language
models and test sets and thus the number of evalua-
tion conditions. It is artificial in the sense that it is
statistically unlike normal dictation, it is more diffi-
cult for many subjects to read, and it seems superflu-
ous to the development of the underlying speech
recognition technology.

Preprocessed prompting text. There is argument to
prompt the user with the natural unpreprocessed text
from the WSJ rather than with the preprocessed
word strings as produced by the text preprocessor.
The reason is that the word stnngs do not represent
the actual statistics of natural speech (see the com-
panion paper by Phillips et. al entitled "Collection
and Analyses of WSJ-CSR Data at MIT").

Spontaneous speech. There is argument that the cur-
rent paradigm for collecting spontaneous speech is
not adequately refined to represent those aspects of
spontaneous speech that are important in actual
usage, and that spontaneous speech should remain in
an experimental and developmental mode during the
next CSR corpus phase.

" Adaptation. Speaker adaptation and adaptation to the
acoustical environment has emerged as a major
interest. It is clear that adaptive systems must be
accommodated in the next phase of the CSR corpus.

" CSR corpus development effort. It is acknowledged
that the CSR corpus development effort is a key
activity in the support and direction of CSR research,
and that this effort therefore requires program conti-
nuity and should not be treated as an occasional pro-
duction demand that can be easily started and
stopped.

These issues are currently under debate in the CCCC, and
the next installment of the CSR corpus. to be called the
CSR corpus, phase two, will no doubt reflect a continued
distillation of opinion an these issues.
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1. INTRODUCTION the multiple analyses arising before and after all
Gemini is a natural language (NL) under- this added robustness are managed in two ways:

standing system developed for spoken language first, by highly constraining the additional rule-
applications. This paper describes the details of based modules by partitioning the rules into pref-
the system, and includes relevant measurements erence classes, and second, through the addition
of size, efficiency, and performance of each of its of a postprocessing parse prference component.
components. Processing starts in Gemini when syntac-

In designing any NL understanding system, tic, semantic, and lexical rules are applied by a
there is a tension between robustness and correct- bottom-up all-paths consfituent parser to populate
ness. Forgiving an error risks throwing away cru- a chart with edges containing syntactic, seman-
cial information; furthermore, devices added to a tic, and logical form information. Then, a second
system to enhance robustness can sometimes en- uerance parser is used to apply a second set of
rich the ways of finding an analysis, multiplying syntactic and semantic rules that are required to
the number of analyses for a given input, and mak- span the entire utterance. If no semantically ac-
ing it more difficult to find the correct analysis. In ceptable utterance-spanning edges are found dur-
processing spoken language this tension is height- ing this phase, a component to recognize and cor-
ened because the task of speech recognition in- rect certain grammatical disfluencies is applied.
troduces a new source of error. The robust sys- When an acceptable interpretation is found, a set
tem will attempt to find a sensible interpretation, of parse preferences is used to choose a single best
even in the presence of performance errors by the interpretation from the chart to be used for sub-
speaker, or recognition errors by the speech rec- sequent processing. Quantifier scoping rules are
ognizer. On the other hand, a system should be applied to this best interpretation to produce the
able to detect that a recognized string is not a sen- final logical form, which is then used as input to
tence of English, to help filter recognition errors by a query-answering system. The following sections
the speech recognizer. Furthermore, if parsing and describe each of these components in detail, with
recognition are interleaved, then the parser should the exception of the query-answering subsystem,
enforce constraints on partial utterances. which is not described in this paper.

The approach taken in Gemini is to con- In our component-by-component view of
strain language recognition with fairly conven- Gemini, we provide detailed statistics on each
tional grammar, but to augment that grammar component's size, speed, coverage, and accuracy.
with two orthogonal rule-based recognition mod- These numbers detail our performance on the sub-
ules, one for glueing together the fragments found domain of air-travel planning that is currently be-
during the conventional grammar parsing phase, ing used by the ARPA spoken language under-
and another for recognizing and eliminating dis- standing community (MADCOW, 1992). Gem-
fluencies known as "repairs." At the same time, ini was trained on a 5875-utterance dataset from

this domain, with another 688 utterances used as
"This research was supported by the Advanced Re- a blind test (not explicitly trained on, but run

search Projects Agency under Contract ONR N00014- multiple times) to monitor our performance on a
90-C-0085 with the Office of Naval Research. The dataset on which we did not train. We also report
views and conclusions contained in this document are here our results on another 756-utterance fair test
those of the authors and should not be interpreted as set that we ran only once. Table 1 contains a sum-
necessarily representing the official policies, either ex- mary of the coverage of the various components on
pressed or implied, of the Advanced Research Projects both the training and fair test sets. More detailed
Agency of the U.S. Government.
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explanations of these numbers are given in the rel- and Lexical Functional Grammar (Bresnan, 1982).

evant sections. Gemini differs from other unification for-

malisms in the following ways. Since many of
Training Test the most interesting issues regarding the formal-

Lexicon 99.1% 95.9% ism concern typing, we defer discussing motivation
Syntax 94.2% 90.9% until section 2.5.
Semantics 87.4% 83.7%
Syntax (repair correction) 96.0% 93.1% Gemini uses typed unification. Each category
Semantics (repair correction) 89.1% 86.0% has a set of features declared for it. Each fea-

ture has a declared value space of possible values
(value spaces may be shared by different fea-

Table 1: Domain Coverage by Component tures). Feature structures in Gemini can be re-
cursive, but only by having categories in their

2. SYSTEM DESCRIPTION value space; so typing is also recursive. Typed
feature structures are also used in HPSG (Pol-

Gemini maintains a firm separation between lard and Sag, in press). One important differ-
the language- and domain-specific portions of the ence with the use in Gemini is that Gemini has
system, and the underlying infrastructure and ex- no type inheritance.
ecution strategies. The Gemini kernel consists of
a set of compilers to interpret the high-level lan- o Some approaches do not assume a syntactic
guages in which the lexicon and syntactic and se- skeleton of category-introducing rules (for ex-
mantic grammar rules are written, as well as the ample, Functional Unification Grammar (Kay,
parser, semantic interpretation, quantifier scop- 1979)). Some make such rules implicit (for
ing, repair correction mechanisms, and all other example, the various categorial unification ap-
aspects of Gemini that are not specific to a lan- proaches, such as Unificati unifegorial Gram-
guage or domain. Although this paper describes mar (Zeevat, Klein, and Calder, 1987)).
the lexicon, grammar, and semantics of English,
Gemini has also been used in a Japanese spo- Even when a syntactic skeleton is assumed,
ken language understanding system (Kameyama, some approaches do not distinguish the category
1992). of a constituent (for example, ap, vp) from its

2.1. Grammar Formalism other features (for example, pers.num, gapsin,
gapsout). Thus, for example, in one version of

Gemini includes a midsized constituent gram- GPSG, categories were simply feature bundles
mar of English (described in section 2.3), a small (attribute value structures) and there was a fea-
utterance grammar for assembling constituents ture MAJ taking values like rI,V,A, and P which
into utterances (described in section 2.7), and a determined the major category of constituent.
lexicon. All three are written in a variant of the
unification formalism used in the Core Language * Gemini does not allow rules schematizing over
Engine (Alshawi, 1992) . syntactic categories.

The basic building block of the grammar for-
malism is a category with feature constraints. 2.2. Lexicon
Here is an example: The Gemini lexicon uses the same category
rp: [wh=ynq,case=(nomVacc), notation as the Gemini syntactic rules. Lexical

persanum=(3rdAsg)J categories are types as well, with sets of features
This category can be instantiated by any noun defined for them. The lexical component of Gem-

phrase with the value ynq for its wh feature (which ini includes the lexicon of base forms, lexical tern-
means it must be a wh-bearing noun phrase like plates, morphological rules, and the lexical type
which book, who, or whose mother), either acc (ac- and feature default specifications.
cusative) or nom (nominative) for its case feature, The Gemini lexicon used for the air-travel
and the conjunctive value 3rdAsg (third and sin- planning domain contains 1,315 base entries.
gular) for its person-number feature. This for- These expand by morphological rules to 2.019. In
malism is related directly to the Core Language the 5875-utterance training set, 52 sentences con-
Engine, but more conceptually it is closely re- tained unknown words (0.9%), compared to 31
lated to that of other unification-based grammar sentences in the 756-utterance fair test set (4.1%).
formalisms with a context-free skeleton, such as
PATR-II (Shieber et al., 1983), Categorial Uni- 2.3. Constituent Grammar
fication Grammar (Uszkoreit, 1986), Generalized
Phrase-Structure Grammar (Gazdar et al., 1982), A simplified example of a syntactic rule is
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syn (vhqynqslash.np, a pure bottom-up chart parser, with some limited
s: [sentence type=vhq, form=tnsd, left-context constraints applied to control creation

gapsin=G, gapsout=Gj, of categories containing syntactic gaps.
np: [wh=ynq, pers-num=N], Some key properties of the parser are
s: [sentence-type=ynq, form=tnsd,

gapsin=np: Epersnum=N]J, * The parser is all-paths bottom-up, so that all
gapsout=nun ll). possible edges admissible by the grammar are

This syntax rule (named whqynq..slash-np) found.

says that a sentence (category s) can be built by * The parser uses subsumption checking to reduce
finding a noun phrase (category up) followed by a the size of the chart. Essentially, an edge is not
sentence. It requires that the daughter np have the added to the chart if it is less general than a
value ynq for its wh feature and that it have the preexisting edge, and preexisting edges are re-
value N (a variable) for its person-number feature. moved from the chart if the new edge is more
It requires that the daughter sentence have a cat- general.
egory value for its gapsin feature, namely an up * The parser is on-line (Graham, Harrison, and
with a person number value N, which is the same as Russo, 1980), essentially meaning that all edges
the person number value on the wh-bearing noun
phrase. The interpretation of the entire rule is that end at position i are constructed beforethat a gapless sentence with sentence..type whq any that end at position i + 1. This feature is

thata gples setene wth entece-ypevhqparticularly desirable if the final architecture of
can be built by finding a wh-phrase followed by a patcul desiab tin a arhtecture of
sentence with a noun phrase gap in it that has the the speech understanding system couples Gem-same person number as the wh-phrase, ini tightly with the speech recognizer, since it

guarantees for any partial recognition input that
Semantic rules are written in much the same all possible constituents will be built.

rule format, except that in a semantic rule, each of
the constituents mentioned in the phrase structure An important feature of the parser is the
skeleton is associated with a logical form. Thus, mechanism used to constrain the construction of
the semantics for the rule above is categories containing syntactic gaps. In earlier

sem(whq-ynq.slash.np, work (Moore and Dowding, 1991), we showed that

[(Ewhq,S1, s: ), approximately 80% of the edges built in an all-

(Np, rp: [), paths bottom-up parser contained gaps, and that

(S. s: (gapsin=np: Egapsem=NxpJD)]). it is possible to use prediction in a bottom-up
parser only to constrain the gap categories, with-

Here the semantics of the mother s is just the out requiring prediction for nongapped categories.
semantics of the daughter s with the illocution- This limited form of left-context constraint greatly
ary force marker vhq wrapped around it. In addi- reduces the total number of edges built for a very
tion, the semantics of the s gap's up's gapsem has low overhead. In the 5875-utterance training set,
been unified with the semantics of the wh-phrase. the chart for the average sentence contained 313
Through a succession of unifications this will end edges, but only 23 predictions.
up assigning the wh-phrase's semantics to the gap
position in the argument structure of the a. Al- 2.5. Typing
though each semantic rule must be keyed to a pre- The main advantage of typed unification is for
existing syntactic rule, there is no assumption of Themmai dvantage type unfication orrule-to-rule uniqueness. Any number of semantic grammar development. The type information on
rules may be written for a single syntactic rule. features allows the lexicon, grammar, and seman-
Wediscuss my e writthenr dtaiof the semantics tics compilers to provide detailed error analysis re-
We discuss some further details ogarding the flow of values through the grammar,
in section 2.6 and to warn if features are assigned improper val-

The constituent grammar used in Gemini con- ues, or variables of incompatible types are unified.
tains 243 syntactic rules, and 315 semantic rules. Since the type-analysis is performed statically at
Syntactic coverage on the 5875-utterance training compile time, there is no run-time overhead asso-
set was 94.2%, and on the 756-utterance test set ciated with adding types to the grammar.
it was 90.9%. The major grammatical category plays a spe-

2.4. Parser cial role in the typing scheme of Gemini. For each
category, Gemini makes a set of declarations stipu-

Since Gemini was designed with spoken lan- lating its allowable features and the relevant value
guage interpretation in mind, key aspects of the spaces. Thus, the distinction between the syntac-
Gemini parser are motivated by the increased tic category of a constituent and its other features
needs for robustness and efficiency that charac- can be cashed out as follows: the syntactic cat-
terize spoken language. Gemini uses essentially egory can be thought of as the feature structure
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type. The only other types needed by Gemini are Edges Time
the value spaces used by features.- Thus for ex- Syntax only 197 3.4 sec.
ample, the type v (verb) admits a feature vform, Syntax + semantics 234 4.47 sec.
whose value space vtorm-types can be instanti- Syntax + semantics + sorts 313 13.5 see.
ated with values like present participle, finite, and
past participle. Since all recursive features are
category-valued, these two kinds of types suffice. Table 2: Average Number of Edges Built by In-terleaved Processing

2.6. Interleaving Syntactic and Se-

mantic Information

Sortal Constraints Selectional restrictions 2.7. Utterance Parsing
are imposed in Gemini through the sorts mecha- The constituent parser uses the constituent
nism. Selectional restrictions include both highly grammar to build all possible categories bottom-
domain-specific information about predicate- up, independent of location within the string.
argi rent and very general predicate restrictions. Thus, the constituent parser does not force any
For example, in our application the object of constituent to occur either at the beginning of
the transitive verb depart (as in flights departing the utterance, or at the end. Those constraints
Boston) is restricted to be an airport or a city, are stated in what we call the utterance grammar.
obviously a domain-specific requirement. But the They are applied after constituent parsing is com-
same machinery also restricts a determiner like all plete by the utterance parser. The utterance gram-
to take two propositions, and an adjective like fur- mar specifies ways of combining the categories
ther to take distances as its measure-specifier (as found by the constituent parser into an analysis
in thirty miles further). In fact, sortal constraints of the complete utterance. It is at this point that
are assigned to every atomic predicate and opera- the system recognizes whether the sentence was
tor appearing in the logical forms constructed by a simple complete sentence, an isolated sentence
the semantic rules. fragment, a run-on sentence, or a sequence of re-

Sorts are located in a conceptual hierarchy lated fragments.
and are implemented as Prolog terms such that Many systems (Carbonell and Hayes, 1983),
more general sorts subsume more specific sorts (Hobbs et al., 1992), (Seneff, 1992), (Stallard and
(Mellish, 1988). This allows the subsumption Bobrow, 1992) have added robustness with a sim-
checking and packing in the parser to share struc- ilar postprocessing phase. The approach taken
ture wheneve, possible. Semantic coverage with in Gemini differs in that the utterance grammar
sortal constraints applied was 87.4% on the train- uses the same syntactic and semantic rule for-
ing set, and on the test set it was 83.7%. malism used by the constituent grammar. Thus,

Interleaving Semantics with Parsing In the same kinds of logical forms built during con-
Gemini, syntactic and semantic processing is fully stituent parsing are the output of utterarce pars-
interleaved. Building an edge requires that syntac- ing, with the same sortal constraints enforced. For
tic constraints be applied, which results in a tree example, an utterance consisting of a sequence
structure, to which semantic rules can be applied, of modifier fragments (like on Tuesday at three
which results in a logical form to which sortal con- o'clock on United) is interpreted as a conjoined
traints can be applied. Only if the syntactic edge property of a flight, because the only sort of thing
leads to a well-sorted semantically-acceptable log- in the ATIS domain that can be on Tuesday at
ical form fragment is it added to the chart. three o'clock on United is a flight.

Interleaving the syntax and semantics in this The utterance parser partitions the utterance
way depends on a crucial property of the seman- grammar into equivalence classes and considers
tics: a semantic interpretation is available for each each class according to an ordering. Utterance
syntactic node. This is guaranteed by the seman- parsing terminates when all constituents satisfy-
tic rule formalism and by the fact that every lexical ing the rules of the current equivalence class are
item has a semantics associated with it. built, unless there are none, in which case the next

Table 2 contains average edge counts and class is considered. The highest ranked class con-
etiming statistics 1 for the 5875-utterance sists of rules to identify simple complete sentences,ara se t the next highest class consists of rules to iden-

training set.
tify simple isolated sentence fragments, and so on.

iGemini is implemented primarily in Quintus Pro- Thus, the utterance parser allows us to enforce a
log version 3.1.1. All timing numbers given in this very coarse form of parse preferences (for exam-
paper were run on a lightly loaded Sun SPARCsta- ple, prefering complete sentences to sentence frag-
tion 2 with at least 48 MB of memory. Under normal ments). These coarse preferences could also be
conditions, Gemini runs in under 12 MB of memory. enforced by the parse preference component de-
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scribed in section 2.9, but for the sake of efficiency components like repair correction (which provide
we choose to enforce them here. the powerful capability of deleting words) not to

The utterance grammar is significantly be applied in circumstances where no repair is
smaller than the constituent grammar - only 37 present. In the 5875-utterance training set, Gem-
syntactic rules and 43 semantic rules. ini misidentified only 15 sentences (0.25%) as con-

taining repairs when they did not. In the 756-
2.8. Repairs utterance test set, only 2 sentences were misiden-

Grammatical disfluencies occur frequently in tified as containing repairs (0.26%).

spontaneous spoken language. We have imple- While the repair correction component cur-
mented a component to detect and correct a large rently used in Gemini does not make use of acous-
subclass of these disfluencies (called repairs, or tic/prosodic information, it is clear that acoustics
self-corrections) where the speaker intends that can contribute meaningful cues to repair. In fu-
the meaning of the utterance be gotten by deleting ture work, we hope to improve the performance of
one or more words. Often, the speaker gives clues our repair correction component by incorporating
of their intention by repeating words or adding cue acoustic/prosodic techniques for repair detection
words that signal the repair: (Bear, Dowding, and Shriberg, 1992) (Nakatani

and Hirschberg, 1993) (O'Shaughnessy, 1992).
(1) a. How many American airline flights leave A central question about the repairs module

b. Can you give me information on all the concerns its role in a tightly integrated system in
flight C fnou m e S nFormanciscono from Ptts- which the NL component filters speech recognition
bightsrom San Francisco ono from. ihypotheses. The open question: should the repairs
burgh to San Francisco on Monday. module be part of the recognizer filter or should

The mechanism used in Gemini to detect and it continue to be a post-processing component?
correct repairs is currently applied as a fallback if The argument for including it in the filter is that
no semantically acceptable interpretation is found without a repairs module, the NL system rejects
for the complete utterance. The mechanism finds many sentences with repairs, and will thus dispre-
sequences of identical or related words, possibly fer essentially correct recognizer hypotheses. The
separated by a cue word (for example, oh or no) argument against including it ;s efficiency and the
that might indicate the presence of a repair, and concern that with recognizer errors present, the
deletes the first occurrence of the matching por- iepair module's precision may suffer: it may at-
tion. Since there may be several such sequences of tempt to repair sentences with no repair in them.
possible repairs in the utterance, the mechanism Our current best guess is that recognizer errors
produces a ranked set of candidate corrected ut- are essentially orthogonal to repairs and that a
terances. These candidates are ranked in order filter including the repairs module will not suffer
of the fewest deleted words. The first candidate from precision problems. But we have not yet per-
that can be given an interpretation is accepted as formed the experiments to decide this.
the intended meaning of the utterance. This ap- 2.9. Parse Preference Mechanism
proach is presented in detail in (Bear, Dowding,
and Shriberg, 1992). In Gemini, parse preferences are enforced

The repair correction mechanism helps in- when extracting syntactically and semantically

crease the syntactic and semantic coverage of well-formed parse trees from the chart. In this

Gemini (as reported in Table 1). In the 5875- respect, our approach differs from many other

utterance trainin$ set, 178 sentences contained approaches to the problem of parse preferences,
nontrivial repairs , of which Gemini found 89 which make their preference decisions as pars-(50%). Of the sentences Gemini corrected, 81 were ing progresses, pruning subsequent parsing paths
analyzed correctly (91%), and 8 contained repairs (Frazier and Fodor, 1978), (Hobbs and Bear,
but were corrected wrongly. Similarly, the 756- 1990), (Marcus 1980). Applying parse prefer-utterance test set contained 26 repairs, of which ences requires comparing two subtrees spanning

Gemini found 11 (42%). Of those 11, 8 were ana- the same portion of the utterance.
lyzed correctly (77%), and 3 were analyzed incor- The parse preference mechanism begins with
rectly. a simple strategy to disprefer parse trees contain-

Since Gemini's approach is to extend ian- ing specific "marked" syntax rules. As an example
of a dispreferred rule, consider: Book those threeguage analysis to recognize specific patterns char- flights to Boston. This sentence has a parse onacteristic of spoken language, it is important for which those three is a noun phrase with a miss-

2 For these results, we ignored repairs consisting of ing head (consider a continuation of the discourse
only an isolate fragment word, or sentence-initial filler Three of our clients have sufficient credit). After
words like "yes" and "okay". penalizing such dispreferred parses, the preference
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mechanism applies attachment heuristics based on constituent a song for Mary from two constituents,
the work by Pereira (1j85) and Shieber (1983) while the corresponding reduce in (a) builds sang

Pereira's paper shows how the heuristics of a song for Mary from three "onstituents. Parse
Minimal Attachment and Right Association (Kim- (b) thus loses by Minimal A, UIment.
ball, 1973) can both be implemented using a Questions about the exact nature of parse
bottom-up shift-reduce parser. preferences (and thus about the empirical ade-

quacy of Pereira's proposal) still remain open, but
(2)(a) John sang a song for Mary. the mechanism sketched does provide plausible re-

(b) John canceled the room Mary reserved yes- sults for a number of examples.
terday.

Minimal Attachment selects for the tree with the 2.10. Scoping

fewest nodes, so in (2a), the parse that makes for The final logical form produced by Gemini
Mary a complement of sings is preferred. Right is the result of applying a set of quantifier scop-
Association selects for the tree that incorporates ing rules to the best interpretation chosen by the
a constituent A into the rightmost possible con- parse preference mechanism. The semantic rules
stituent (where rightmost here means beginning build quasi-logical forms, which contain complete
the furthest to the right). Thus, in (2b) the parse semantic predicate-argument structure, but do not
in which yesterday modifies reserved is preferred. specify quantifier scoping. The scoping algorithm

The problem with these heuristics is that that we use combines syntactic and semantic in-
when they are formulated loosely, as in the pre- formation with a set of quantifier scoping prefer-
vious paragraph, they appear to conflict. In par- ence rules to rank the possible scoped logical forms
ticular, in (2a), Right Association seems to call for consistent with the quasi-logical form selected by
the parse that makes for Mary a modifier of song. parse preferences. This algorithm is described in

Pereira's goal is to show how a shift-reduce detail in (Moran, 1988).
parser can enforce both heuristics without conflict
and enforce the desired preferences for examples
like (2a) and (2b). He argues that Minimal At- In our approach to resolving the tension be-
tachment and Right Association can be enforced in tween overgeneration and robustness in a spoken
the desired way by adopting the following heuris- language understanding system, some aspects of
tics for resolving conflicts: Gemini are specifically oriented towards limiting
1. Right Association: In a shift-reduce conflict, overgeneration, such as the on-line property for

1. efr R hift s A ation r ash e cthe parser, and fully interleaved syntactic and se-
prefer shifts to reduces. mantic processing. Other components, such as the

2. Minimal Attachment: In a reduce-reduce con- fragment and run-on processing provided by the
flict, prefer longer reduces to shorter reduces. utterance grammar, and the correction of recog-

nizable grammatical repairs, increase the robust-
Since these two principles never apply to the same ness of Gemini. We believe a robust system can
choice, they never conflict, still recognize and disprefer utterances containing

For purposes of invoking Pereira's heuristics, recognition errors.
the derivation of a parse can be represented as the Research in the construction of the Gemini
sequence of S's (Shift) and R's (Reduce) needed to system is ongoing to improve Gemini's speed and
construct the parse's unlabeled bracketing. Con- coverage, as well as to examine deeper integration
sider, for example, the choice between two unla- strategies with speech recognition, and integration
beled bracketings of (2a): of prosodic information into spoken language dis-

(a) [John [sang [a song ] [for Mary]]] ambiguation.
S S SS RS S RRR

(b) [John [sang [ [a song ] [for Mary I ] ] ] REFERENCES
S S SS R S S RRRR
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There is a shift for each word and a reduce for gine, MIT Press, Cambridge.
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Focus and Ellipsis in Comparatives and Superlatives: A Case Study
Jean Mark Gawron
SRI International

1. Introduction

The central goal of this paper is to present a semantics of comparatives that
deals uniformly with comparative ellipsis and superlatives. Consider ( 1):

(1) Jean1 gave heri sister a more expensive book than Alice.

Understandings of the following types are possible:

1. HER SISTER focus: Jean gave Jean's sister a more expensive book
than Jean gave Alice.

2. JEAN focus (strict): Jean gave Jean's sister a more expensive book than
Alice gave Jean's sister.

3. JEAN focus (sloppy): Jean gave Jean's sister a more expensive book
than Alice gave Alice's sister.

In each case, the NP which semantically parallels the NP in the than-phrase
has been called the focus. I will refer to the NP in the than-phrase as the con-
trast. Now consider the variants in ( 2), which have analogous interpretations:

(2) Jean gave her sister the most/more expensive book.

1. HER SISTER focus: of all/both x's such that Jean gave x books, Jean
gave Jean's sister the most/more expensive book.

2. JEAN focus (strict): of all/both x's such that x gave Jean's sister books,
Jean gave Jean's sister the most/more expensive book.

3. JEAN focus (sloppy): of all/both x's such that x gave x's sister books,
Jean gave Jean's sister the most/more expensive book.

I will use the term CONTRAST-SET to describe the set of entities whose prop-
erties are being measured and compared, a set which always includes the
denotation of the focus. In the paraphrases above, the contrast-set is de-
scribed by the of-phrase. I will call the nonelliptical focus constructions in
( 2) maximal-degree constructions (rather than superlative constructions) be-
cause they come with both comparative and superlative morphology. The only
difference between the two is whether or not the contrast-set is presupposed
to have two members.
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Each of the three readings in ( 2) can be obtained from the corresponding
reading of (1) simply by quantifying over the argument position filled by the
contrast. Sentence ( 2) has another reading with no parallel in (1). This is the
reading on which no givings are presupposed. There is simply a set of books
available in the discourse, and Jean has given her sister the most expensive.
I will refer to the minimal NP containing the comparative element as the
COMPARATIVE NP in comparatives and the SUPERLATIVE NP in superlatives.
For this reading, I will say that the superlative NP is the focus. One kind of
elliptical comparative which makes a parallel comparison is shown in

(3) Jean gave her sister a more expensive book than War and Peace.

Here, too, only one giving event is at issue. What is being compared is the
expense of the book in that giving event with the expense of War and Peace.

The basic conclusion I draw from (1), (2), and (3) is the following: for
both constructions interpretations vary according to which NP is taken as
focus. In effect, the same interpretive difficulties that arise in comparatives
arise in maximal-degree constructions.

I will argue below that there is a striking similarity between the pattern
of readings in (1) and (3) and a pattern typical of the interaction of focus and
quantification. Consider, two different focus possibilities for ( 4):

(4) a. Most New Yorkers eat Chinese food with CHOPSTICKS.

b. Most New Yorkers eat CHINESE FOOD with chopsticks.

The two focus possibilities correspond roughly to the following readings:

(5) a. Most New Yorkers who eat Chinese food with something eat Chinese
food with CHOPSTICKS.

b. Most New Yorkers who eat something with chopsticks eat CHINESE

FOOD with chopsticks.

In each case the focus construction can be thought of as adding a restriction to
the quantification. The restriction is obtained by abstracting the focus out of
the main clause semantics and existentially quantifying it away. I will follow
Jacobs 1991 by calling the property obtained by abstracting the focus out of
the main clause semantics the BACK(GROUND.

Consistent with a number of other analyses (beginning with Cresswell
1976), this treatment will interpret both comparatives and superlatives as a
quantification over degrees; the various readings above are all obtained by
restricting the comparative quantification with different backgrounds.

As remarked above, (2) has both superlative and comparative variants.
Thus, comparative morphology is compatible with maximal-degree semantics.
Some sentences are ambiguous. Consider:
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(6) Who's taller?

Sentence ( 6) might be uttered in two different sorts of contexts:

(7) a. Their center is not the tallest member of the team. Who's taller?
b. John and Bill weigh the same. Who's taller?

In (a), the question is which member of the team under discussion is taller
than the center. This is a discourse-bound comparative. In (b), the discourse
provides a contrast-set and the question is who in that set has the maximum
height. Since the set hal cardinality two, the comparative form of the adjective
is licensed. The second sentence in (b) might be replaced with any of the
following:

(8) a. Of the two, who's taller?
b. Who's taller, John or Bill?
c. Is John or Bill taller?

All of these unambiguously call for a maximal-degree interpretation.
The comparative construction exhibits a bewildering range of elliptical

phenomena. This paper is concerned with COMPARATIVE ELLIPSIS. I take it
that all of the following are elliptical:

(9) a. John has met more presidents than Mary.
b. John has met more presidents than Mary has.
c. John has met more presidents than Mary has met.
d. John owns pictures of more presidents than Mary owns.
e. John owns more trucks than Mary does cars.

Sentence ( 9a) illustrates what I will call comparative ellipsis; ( 9b) illustrates
the comparative construction interacting with verb-phrase ellipsis; ( 9c) illus-
trates the almost obligatory deletion of the head noun of the degree NP in the
than-clause when it is identical with the head noun of the comparative NP;
and ( 9d) illustrates what may be a more extreme version of the same thing.
Sentence ( 9e) illustrates gapping in a comparative clause. Dealing with all
these examples would be well beyond the scope of this paper.

Having stated the practical agenda for the paper, I will add that I do not
foresee any problems of principle. The approach to both ellipsis and focus that
I will adopt is from Dalrymple, Shieber, and Pereira 1991 (henceforth DSP),
a paper which deals primarily with verb-phrase ellipsis. ' The DSP framework
shows promise of being a very general tool with which to approach phenomena
of ellipsis. It seems likely that. examples of the type exhibited in ( 9b) and ( 9e)

'Pulman 1991 also proposes applying the DSP framework to comparative ellipsis. The
details of the analysis are different, but thOw approach is very much in the spirit of what is
argued bore.
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do not present problems particular to comparatives. Sentences I 9c) Ard ( 9d)
do raise issues particular to comparatives, but the form of ellipsis shown there
is largely orthogonal to the central issues of this paper. I emphasize sentences
like ( 9a) because these are the examples that behave most like other focus
constructions with regard to the scope-of-focus issues discussed in Section 2.1.

I will distinguish between degree and quantity comparatives. Degree comn-
paratives are adjectival or adverbial. Quantity comparatives involve number
or amount:

Degree: John drove faster than Mary.
John was taller than Mary.

Quantity: John ate more apples than Mary.
John drank more wine than Mary.

Due to limitations of space, I will deal only with degree comparatives in this
paper. There are some interesting issues involved in extending the account here
to quantity comparatives, which show somewhat different ranges of readings
of scope properties. For a fuller discussion, see Gawron 1992.

2. Parallels between Measure Constructions and Only

The primary point of this section is to draw parallels between comparative
ellipsis and other focus constructions. It is clear from the examples discussed in
Section 1 that the than-phrase in comparative ellipsis seeks to associate with a
focus much as a word like only does. Thus, interpreting elliptical comparatives
and superlatives entails determining a focus or foci and a scope of focus.

2.1. Scope of Ellipsis and Scope-Fixing

Consider first the ambiguity of a sentence like:

(10) John wants to own more records than Mary.

Sentence (10) can be paraphrased with either ( la) or ( llb):

(11) a. Wide scope: John wants to own more records than Mary wants to
own.

b. Narrow scope: John wants to own more records than Mary owns.

In the wide-scope reading, the comparison is between desires; in the narrow-

scope reading, the comparison is between the number of records John owns
and the number John owns, and John wants that comparison to work out a
certain way. As the paraphrases suggest, there is an ambiguity in how much
missing material has to be reconstructed. Now consider a superlative example:

2 Paraphrase (b) here actually collapses two distinct. dc rr and de dacto readings, but that
does not affect the point under discussion,

A-66



(12) John wants to own the most records.

Again, two readings are possible:

(13) a. John wants to own more records than anyone else wants to own.
b. John wants to own more records than anyone else owns.

There is a difference between (11) and (13) in these cases; the attachment of
the than-phrase gives the comparative construction a syntactic way of fixing
the scope of ellipsis. Consider the following:

(14) John wants to own more records than Mary by next year.

Sentence ( 14) has only a narrow-scope reading: what John wants is that
by next year his collection is bigger than Mary's. A natural explanation is
that the modifier by November most naturally attaches low, thus forcing low
attachment of the than-phrase. Low attachment of the than-phrase means
narrow scope-of-focus.

In light of this evidence, we propose Hypothesis A, to be revised later:

Hypothesis A

The sister of than-phrase is the scope-of-focus in comparative el-
lipsis.

The simple picture of comparative ellipsis is this: there is a relation between an
individual and a measure and the measure-values of the relation are compared
for the focus and the contrast. By the scope-of-focus in Hypothesis A, I mean
the constituent whose semantics provides the relation being compared. In the
wide-scope reading of (10), that constituent is the VP wants to own more
records. In the narrow-scope reading, that constituent is the VP own more
records.

In being governed by something like Hypothesis A, comparative ellipsis
sentences with than resemble sentences with only. Scope-fixing effects with
only are discussed in Taglicht 1984 and Rooth 1985:

(15) a. They were advised to only learn Spanish.
b. They were only advised to learn Spanish.

Here (a) has the reading on which advice is given to ignore languages other
than Spanish; (b) has the reading on which the only advice given was to learn
Spanish. The (a) sentence lacks the reading available for the (b) sentence,
and vice versa. Thus, syntactic attachment of only fixes the scope of ellipsis,
just as the syntactic attachment of the than-phrase does. The sentences in
(15) are unambiguous only by a syntactic accident. The word only attaches
verb-phrase initially so that it is clear which verb-phrase it has chosen; the
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than-phrase attaches verb-phrase finally, so that sentences like those in (13)
may be ambiguous.

2.2. Entailments in Adjectival Comparatives

Noun phrases analogous to the following are noted in Bresnan 1973:

(16) a. A stronger man than John was found.
b. ?A stronger man than Mary was found.
c. A man stronger than John was found.
d. A man stronger than Mary was found.

One would like these facts to fall out from Hypothesis A. That is, all of the
NPs in (16) are elliptical, and what they are elliptical for is determined by
how much material is C-commanded by the than-phrase. Thus, one's account
of ellipsis, guided by Hypothesis A, ought to give the NPs semantics roughly
like the following:

(17) a. An m strong man such that [m > s and John is an s strong man]
b.?An m strong man such that[ m > s and Mary is an s strong m-n]
c. A man m strong such that [ m > s and John is s strong]
d. A man m strong such that in > s and Mary is s strong]

An interesting property of these cases is that they appear related to some
exceptions to Hypothesis A (discussed in Section 2.1). Consider:

(18) a. A more competent engineer than Bonnie was hired.

An m competent engineer such that [m > s and Bonnie is
an s competent engineer] was hired.

b. A more competent engineer was hired than Bonnie.

An m competent engineer was hired such that [m > s and
Bonnie, an s competent engineer, was hired].

A literal application of Hypothesis A would lead one to expect that these had
something like the indicated paraphrases, but in fact sentences (a) and (b) do
not appear to differ on their possible readings. Crucially, (b) has no entailment
that Bonnie was hired. Contrast the sort of case which motivated Hypothesis
A:

(19) BONNIE hired a more competent engineer than Frieda.

Here, if Bonnie is being compared to Frieda (that is, if Bonnie is the focus),
then Frieda has to have hired a engineer.

We can sum up the facts from this section and Section 2.1 with the
following observation:
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Observation

(a) When the comparative NP is the focus, the syntactic scope-of-
focus is the comparative N-bar.
(b) Otherwise the syntactic scope-of-focus is the surface sister of
the than-phrase.

One might eliminate the disjunctive nature of this observation in either of two
ways. First, one might assimilate (18b) to extraposition, and apply Hypothesis
A only to the source. The drawback of this approach, it seems to me, is that
it offers no explanation of the facts. Although an extraposition analysis will
capture the actual reading of (18), it gives no account of why other readings
aren't possible. To correctly constrain the readings, we will need to restrict
than-phrases to N-bar attachment when the focus is tht -o~mparative NP. But
this restrictions will be lifted when the focus is anything else. The other way
to go is to look for a semantic explanation. This is what I will propose below.

3. Semantics of Comparatives

3.1. Subdeletion

To illustrate the approach to the semantics of comparatives taken here,

it will be useful to start with a noncomparative example:

(20) This desk is six feet wide.

I will represent the semantics of degree adjectives as a relation between indi-
viduals and degrees:

(21) wide (that-table, [foot 6])

The term [foot 6] denotes a measure in an ordered set of measures with the sort
of structure discussed in Krifka 1987 and Nerbonne 1991. It is not crucial to
the issues discussed in this paper that degree adjectives be relations between
individuals and degrees, but it is crucial that the semantics of a simple measure
assertion like (21) have in it terms that correspond to an individual being
measured and a measure.

I will also assume that adjectival relations are downwardly monotonic on
their measure arguments, so that if ( 21) is true then

(22) wide ( that-table, [foot 51)

is also true. So the truth-conditions of ( 21) will only require that table to be
at least 6 feet wide. One advantage of this downward monotonicity is that the
semantics of that table is wide can just be:

(23) wide (that-table, STANDARD)

A-69



where STANDARD is some pragmatically fixed standard, The truth-conditions
of ( 23) will then require that table to be at least as wide as the standard.

The kind of comparative that is easiest to understand semantically occurs
relatively infrequently:

(24) This desk is longer than that table is wide.

I assume that ( 25) provides a satisfactory logical representation of ( 24):

(25) V ?s [wide (that-table, ?s),
3 ?m [> (?mn, ?s),

long (this-desk, ?m)]]

Glossing the semantics: every degree s that is in the width relation to that
table is such that there exists a degree m greater than s that stands in the
length relation to this desk.

One reason for the universal quantification is the downward monotonic-
ity of the adjective relation. We need to require this desk to have a length
taller than all the widths of that table in order to be sure that the maximal
width is included. There are other motivations for the universal quantification,
however. One is that the than-phrase is a negative polarity context:

(26) John is smarter than any bureaucrat.

Another is the behavior of comparatives in modal contexts:

(27) John can run faster than Bill.

This sentence should come out true only if John can run faster than any speed
Bill can run. To get this right, one would need universal quantification even
if the adjective relations weren't downwardly monotonic.3

The central claim of this semantics is that the comparative construction
introduces a quantifier on measures restricted by the material in the than
phrase.4

I will assume that each measure set has an ordering relation on measures
which I will notate simply as >, and that comparatives use >. I will call

3Thanks to Bob Moore for pointing this example out.
'I will refer to the second-order property obtained by abstracting on 10 in:

V8[ O(s),3[ (m, s), ¢(m)]]

as the comparative quantifier; thus, 1 stands as the comparative quantifier's scope. Of
course, there are really two quantifiers here, and they can scope independently, but for most
of the examples under consideration that possibility is not germane to the discussion. This
paper has little to say about constraints on the scoping possibilities of the comparative
quantifier.
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the measure constrained by the main clause the STANDARD and the measure
constrained by the than-clause the REFERENCE.

3.1. Comparative Ellipsis

We now turn to cases involving ellipsis. We begin with a brief summary of the
framework of DSP, using a verb phrase ellipsis example:

(28) a. Bill washed his car and John did too.
b. ANDtwash(b,car(b)), P(j)]

Given the semantics in (b), the problem of interpreting (a) now reduces to
the problem of solving for the unspecified property P. In DSP, resolving that
property involves the following steps.

1. Locate source: wash(b,car(b)).

2. Establish parallel elements and locate primary occurrences in source.

wash (h, car(b))

Parallel elements are constituents in a tree. Primary occurrences are
terms in the semantic form. A primary occurrence in the source is a
term actually contributed by a parallel element. Thus, the two subjects
are parallel in ( 28a), and the first occurrence of b above is primary
because it is contributed by the subject NP in the source. The second
is not because it is contributed by a pronoun which is not a parallel
element.

3. Set up equation.

P(b) = wash (b, car(b))

4. Solve equation.

Strict: P = Ax[wash (x, car(b))]
Sloppy: P = Axfwash (x, car(x))]

P = Ax[wash (h, car(x))]
P = Ax[wash (b, car(b))]

5. Discard UNACCEPTABLE SOLUTIONS, that is, solutions which contain
a primary occurrence. DSP reject certain solutions that violate paral-
lelism in that they do not abstract over a primary occurrence. In this
case the single primary occurrence is the occurrence of b filling the first
argument role of wash. Thus, the third and fourth solutions above are
unacceptable.
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We now turn to cases of comparative ellipsis:

(29) Jean gave her sister a more expensive book than Alice.

The semantics is

(30) - y [Vs [R(a, s),
3m [>(m, s),

AND[ book(y),
expensive( y, m)]]I,

give( j , sister(j) , y)]

The idea here is that what the than-phrase contributes is just a relation be-
tween an individual and a measure:

R(a, s)

Note that is not meant to commit the syntax in any way to an empty measure
element.

On the approach to the semantics of comparatives we have adopted, the
than-phrase always introduces a proposition which restricts the comparative
quantifier, whether or not the sentence is elliptical. In the elliptical sentences
all we have restricting the quantifier is an unspecified relation between an
individual and a degree. The problem of interpreting the elliptical sentences
now reduces to the problem of resolving the relation R. We will resolve the
relation by abtracting elements out of the semantics of the main clause. Thus
we have a paradigm case of the interaction of focus and quantification as
discussed in section 1. A relation is being contributed by the semantics of the
main clause (this is what corresponds to the background of Jacobs 1991), and
that relation restricts the domain of quantification.

In the framework of DSP, solving for R means setting up a second-order
equation on the basis of parallelisms between the elliptical semantics and some
template semantics. The steps are as follows:

1. Locate scope-of-focus. We will use the term scope-of-focus rather than
source because, as illustrated in section 2.1, there are ambiguities in
comparative ellipsis that can be captured only if the amount of material
omitted in the ellipsis is allowed to vary. In this case, the template
on which the elliptical clause will be built is just the semantics of the
main clause minus the com, ýrative quantifier. That the comparative
quantifier must always be abstracted out before setting up equations is
just a stipulation about degree constructions (the account of maximal-
degree constructions will entail the same move):

(31) 3y[AND[book(y),
expensive( y, m)],

give( j, sister(j) ,y)]J
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2. Establish parallel elements and locate primary occurrences in source. In
comparative ellipsis, there are two parallelisms to worry about. One will
be established simply by locating parallel elements in a syntactic tree.
This is the parallelism of the focus and contrast. The other parallelism
is that between the standard measure and the reference measure. Not
wishing to adopt an abstract syntactic analysis for these cases, I will
simply assume that parallelism of degrees is given by the construction.
Thus, the unique occurrence of the standard in ( 31) will be a primary
occurrence. Let us consider the case where Jean is focus.

Main Clause: JEAN gave her sister an m expensive book
Focus Standard

Than Clause: Alice s
Contrast Reference

3. Set up and solve equations.

(32) JEAN as focus: R(j,m) = 3y[AND[book(y),
expensive( y, r)],

give(j, sister(j), y)]
Strict: R = Ax, z [3 y[AND[book(y),

expensive( y, z)],
give(x, sister(j), y)]

Sloppy: R = Ax, z [3 y[AND[book(y),

expensive( y, z)],
give( x, sister(x), y)]]

Substituting the acceptable solutions for R in ( 30) yields the desired
result.

4. Discard unacceptable solutions. Again these are just the solutions that
have primary occurrences in them. There are five unacceptable solutions
in all, two which fail only in leaving behind the primary occurrence of the
focus, two which fail in leaving behind both primary occurrences, and
one which fails in leaving behind the primary occurrence of the standard.
Here are two of them:

(32) R = Ax, z 3 y[AND[book(y),
expensive( y, z)],

give(j, sister(x), y)]]1

(34) R = Ax, w 3 y[AND[book(y),
expensive( y, z)],

give(j, sister(x), y)]]
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The first of these would give the impossible reading: Jean gave Jean's
sister a more expensive book than Jean gave Alice's sister. The second is
just vacuous abstraction on both argument positions and would give the
contradictory reading that Jean gave her sister a more expensive book
than Jean gave her sister. The reader may verify that the other three
unacceptable solutions all give impossible readings.

The other reading to deal with is the case where her sister is the focus.
In this case the equation is:

(35) HER SISTER: R(sister(j),mr) = 3 y[AND[book(y),
expensive( y, m)],

give( j, sister(j), y)]

R = Ax, z [3 y[AND[book(y),
expensive( y, z)],

give( j, x, y)]]

In this case there is only one acceptable solution because there is only one
primary occurrence for each argument of the relation. There are three unac-
ceptable solutions, one which leaves behind just the primary occurrence of the
focus, one which leaves behind just the primary occurrence of the standard,
and one with vacuous abstraction on both argument positions of R, which
leaves behind both.

We turn now to the other example of comparative ellipsis discussed in
Section 1:

(36) Jean gave her sister a more expensive book than War and Peace.

The semantics is:

(37) 3 y [Vs [R(War-and-Peace, s),
3 m [>(m, s),

AND[ book(y),
expensive( y, m)]]],

give( j , sister(j) , y)]

The equations for this scope-of-focus are:

(38) R(y,m) = AND[ book(y),
expensive( y, m)]

R = Ax, z [AND[ book(x)
expensive( x, z)])

Since R is applied to War and Peace, the sentence will be true only if War and
Peace is a book. This, then, is one step in accounting for the entailment facts
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noted in Bresnan 1973 and discussed in Section 2.2. We still need to explain
why this is the correct scope-of-focus for those examples, however.

In this case the head noun and the adjective predications must both
contain primary occurrences. Among the unacceptable solutions, there are
uwo ruled out simply because they do not abstract over one of the two primary
occurrences of y:

(39) R = Ax, z [AND[ book(y),
expensive( x, z)1I

R = Ax,z [AND[ book(x)
expensive( y, z)]]

The first reading would not preserve the entailment that War and Peace is
a book (see Section 2.2). The second would contradictorily require that y be
more expensive than itself.

In calling both occurrences of y primary occurrences here, we are building
on the sense of primary occurrence as it is assumed in DSP. The motivation
for this move is the following: the two occurrences of y in the equations in
(39) differ from the two occurrences of j in (32) in that the grammar always
"requires the two occurrences of y to be identified. An adjective modifying
a noun always has its theme argument identified with the noun's. One may
think of the semantics of the N-bar as being:

[book A Ax[expensive( x, z)] ](w)

Here A represents property conjunction. From this perspective there is really
only one primary occurrence of the N-bar variable. What is going on here is
reminiscent of other cases where the grammar requires identification of two
variables, such as the cases of obligatorily sloppy pronouns in Serbo-Croatian
discussed in DSP. A more familiar case would be the cases of obligatory sloppy
readings with raising verbs such as expect in

(40) John expects to leave and Bill does too.

Here there is no reading on which Bill expects John to leave. Yet there is good -

motivation for believing that expect takes a proposition argument, and that
the semantics of the source clause is

(41) expect(j,leave(j))

Blocking the strict reading would entail hypothesizing two primary occur-
rences.

We have now worked through the semantics of two closely related ellipti-
cal examples, arguing that the principal difference between them is a difference
in the scope-of-ellipsis. It should be clear from these examples that any hopes
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this analysis may have in being explanatory lie in being able to give a prin-
cipled account of how the scope-of-focus is determined. Consider again the
semantics shown in (30). What would have happened if we had chosen the
scope-of-focus in (31) with the comparative NP as the focus? The reading
predicted then would have been incorrect:

(42) Jean gave her sister an m expensive book and Jean gave her sister War
and Peace, an s expensive book, and m was bigger than s.

This is essentially the same fact we noted for (18).
I will now argue that for semantic reasons the maximal scope-of-focus

when the comparative NP is focus is the N-bar. Consider (37). There are
four cases to look at:

1. Nbar scope: okay.

2. The scope-of-focus is the scope of the indefinite.

R(y,m) = give(j, sister(j), y),

Here there is no occurrence of m on the right-hand side of the equation.
Therefore, this equation has no solution that does not involve vacuous
abstraction.

3. The scope-of-focus is the sentence witn indefinite quantified in and r is
a first-order relation. The equation then is

R(y, m) = 3 y[AND[ book(y),
expensive( y, m)],

give( j , sister(j), y)]]

The problem with this equation is that there is no occurrence of y, the
focus, on the right-hand side. Since the quantifier has been quantified
in, any y on the right hand side is a bound variable and no solution
can abstract over it. Again, the equation has no solutions which do not
involve vacuous abstraction.

4. The scope-of-focus is the sentence with indefinite quantified. R is a
higher-order relation. The system in DSP allows type-lifting in order to
deal with cases where one or both of the parallel elements is a quantifier.
Thus, in analyzing:

Every student revised his paper, and John did too.
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John can be made parallel to Every student by type-lifting. On this
account (36), War and Peace is parallel not to an individual-level vari-
able, but to the indefinite quantifier, a more expensive book. It is thus
type-lifted to be a quantifier:

AP[P(War-and-Peace)]

and R is correspondingly type-lifted to allow a quantifier to be one of its
arguments. The resulting equation is

/AP[] y [AND[ book(y), [ AND[book(y),
R expensive( y, m)] ,m =3 expensive( y, rn)],

P(y)]] [give( j , sister(j), y)

But this, too, has no solutions which do not involve vacuous abstrac-
tion. In this case no solution can simultaneously abstract over the focus
quantifier and m the standard. Two of the solutions are

R = AP, z[P (Ay[give( j , sister(j), y)])
R = AP, z[3 y[AND[ book(y),

expensive( y, z)],
give( j , sister(j) , y)]]

There is also a solution which vacuously abstracts over both argument
positions.

If we could eliminate all the equations that have only vacuous solutions,
then we would have an account of why the N-bar is the only scope-of-focus
in this case. Careful readers of DSP will note that they posit no restriction
against vacuous solutions. Instead, unacceptable solutions are characterized
as those which still contain a primary occurrence. This rules out many cases
of vacuous abstraction, but it also rules out solutions such as (33). Rather
than try to modify this t.haracterization, I want to suggest that there is an
independent restriction, not on solutions, but on equations, which rules out
those that have no nonvacuous solutions. This restriction should be thought
of as an adjunct to the algorithm for finding a source and parallel elements
and setting up an equation. An equation which has no nonvacuous solutions
is simply one for which no true parallelisms have been found.

We can now revise Hypothesis A of Section 2.1 and propose a semantic
account of the scope-of-focus facts observed in (18):

Hypothesis A: Final Version

The syntactic scope-of-focus is the maximal constituent of the sur-
face sister of the than-phrase whose semantics can provide a scope-
of-focus with acceptable ellipsis equations.
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Note that with this hypothesis, we have an account of the adjectival entailment
facts noted in Bresnan 1973 and discussed in section 2.2

(43) ? A stronger man than Mary was found.

The widest scope-of-focus that yields an acceptable equation is the N-bar.
There is one narrower scope-of-focus than that N-bar that yields equations
with acceptable solutions, namely, the semantics of the adjective:

(44) strong( y, m)

But Hypothesis A, on syntactic gr,'cnds, rules out choosing this as the scope-
of-focus for (43). It follows from this that any equations resolving the ellipsis
will have to include the noun predication in their solutions for R. Thus, any
s-,Ilutions will entail that Mary is a man.

3.2. Maximal-Degree Consturctions

We begin by presenting the semantics for (2), reproduced here:

(45) Jean gave her sister the most expensive book.

The semantics, irrespective of what the focus i,s is

(46) they [Vs [3x[C(x), R(x, s)),
3m [Ž(m, s),

AND[ book(y),
expensive( y, m)]

give( j , sister(j) , y)]

There are several differences here from the semantics of a comparative ellipsis
sentence. First, the position filled by the contrast in the than-phrase has
been existentially quantified over, with that quantification restricted to the
members of a contrast-set C. Under the scope of V, this has the effect of a
universal quantification. Second, the ordering relation has been changed from
> to> . This is because the focus is in the contrast-set too, and if the sentence
is ever to be uttered truthfully, ties with the highest scoring element of the
contrast set must be allowed.'

One might argue for the inclusion of the contrast-set C in (46) on the
basis of a general requirement that all quantification should be contextually
restricted. But independently of that there is a specific motivation for making
it explicit in the semantics of superlatives. Sometimes the contrast-set can be
associated with syntactically overt material:

'The only difference in the semantics of Jean gave her sister the more expensive book is
that instead of quantifying over the contrast-set with 3 we quantify with (3; 2).
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(47) a. Of the three sisters, Jean bought the most expensive book.
b. Which sister bought the most expensive book?

Thus, ( 47a) is appropriate only when JEAN is the focus, and the set of buyers
Jean will be compared to is the set of the three sisters in question, which must
include Jean. In ( 47b), on what is probably the most accessible reading, the
contrast-set is identified with the restriction-set of the wh-phrase.

The equations for the case when Jean is focus and for the case when her
sister is focus are exactly as they were for the comparative analogue discussed
in Section 3.2, as are the solutions. As was noted in Section 1.1, sentence ( 46)
has another focus possibility, parallel not to (29) but to (36). In this case the
focus is the superlative NP. The equation for this reading is exactly the same
as the equation for (36), given in (38).

Another difference between the superlatives and the comparatives is that
no version of Hypothesis A applies to the superlatives, since they have no
than-phrase. Thus, nothing prevents a reading in which the scope of focus is
narrower than N-bar when the focus is the superlative NP:

(48) Of the three items the clerk showed, Jean bought the most expensive
ring.

Here the items need not be all rings. The scope-of-focus must be the adjective-
phrase alone:6

4. Conclusion

In this paper I have proposed an analysis of mveasure constructions that
provides a uniform semantics for comparative ellipsis and superlatives, arguing
that both can be regarded as examples of focus constructions. The specialness
of comparatives ellipsis consists in requiring a contrast along with a focus.

The analysis proposes an account of the entailments of degree compara-
tives in which the comparative NP is the focus. Thus,

(49) A stronger man than Bill was found.

entails that Bill was a man. This is accounted for by the relationship between
the ocope-of-focus and the than-phrase.

I conclude with an effort to show that the equational machinery of DSP
does extend neatly to handle a paradigm case of a focus construction. The
following is a reworking of the analysis of only in Rooth 1985:

(50) John only introduced Sue to her brother.

'Thanks to Carl Pollard for pointing this reading out.
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(510 Vp[ 3 x [A(x),AND["p, (P(x)=p)]],
(p = introduce(j, brother(s),s))]

SUE: P(s) = tintroduce(j, brother(s), s)]
P = Ay [introduce(j, brother(y), y)]
P = Ay [introduce(j, brother(s), y))

HER BROTHER: P(brother(s)) = Lintroduce(j, brother(s),s)]
P = Ay [introduce(j, y,s)]

The resemblance of the proposed semantics to the semantics of maximal mea-
sure constructions is striking. Instead of a universal quantification over mea-
sures, there is a universal quantification over propositions. Most interestingly,
in both cases, the restriction of the universal requires an existential quanti-
fication over a pragmatically given set. In the case of comparatives, I have
called that the contrast-set; Rooth calls A the alternative-set, characterizing
the members of A as the alternatives to the focus in the discourse. In the
case where her brother was focus, Rooth 1985 would associate two things with
( 50):

(52) a. Vp[C(p) A -p -- p = introduce(j, brother(s), s)]
b. Ap3y[[A(y)] A p = introduce(j, y, s)]

The first is roughly the semantics of the sentence, independent of what the
focus is; the second is the p-set (or presupposition set) that goes with having
her brother az focus. The p-set property in ( 52b) is then identified with the
property of propositions C in ( 52a). In the recasting given in ( 51) predicating
C of p has been replaced by predicating property P of any individual x and
requiring proposition p to be equal to the resulting proposition. The equations
solving for P are then set up depending on what has been chosen as the focus.
In effect, the task of recursively building up p-sets in parallel with the main
semantics is being taken over by the equation-solving machinery. Rooth's idea
that one component of the semantics should be kept independent of what
the focus is has been preserved. In fact, that property has been preserved
throughout this paper: the semantics independently of a solved equation is
always compatible with any focus in the scope-of-focus.

Rooth's approach shares with that of Jacobs 1991 the idea that an ac-
count of focus requires recourse to some two-component account of meaning.
In Rooth it is the main translation and the p-set; in Jacobs it is the focus and
the background. One interesting feature of the equational approach is that it
tries to make do with a single meaning component, which can then generate
a variety of restrictions on the quantifications of focus operators.
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ABSTRACT represents a wide range of variability in speaker char-
The Air Travel Information System (ATIS) domain serves as acteristics, speech style, language style and interaction
the common task for DARPA spoken language system re- style. It has allowed individual sites to experiment with
search and development. The approaches and results possi- data collection methods: replacing various system com-
ble in this rapidly growing area are structured by available ponents with a human results in data we can aim for in
corpora, annotations of that data, and evaluation methods. the future, while completely automated systems help us
Coordination of this crucial infrastructure is the charter of to focus on the major current issues in system accuracy
the Multi-Site ATIS Data COllection Working group (MAD- and speed. Sites have also experimented with interface
COW). We focus here on: selection of training and test data, strategies (spoken output only, tabular output only. re-
evaluation of language understanding, and the continuing

search for evaluation methods that will correlate well with sponse summaries, paraphrase, degree initiative taken by

expected performance of the technology in applications, the system may be more or less appropriate for different
users and different tasks and all can dramatically affect

1. Introduction the type of data resulting).

Data availability and evaluation procedures crucially MADCOW's recent accomplishments include:
structure research possibilities: the type and amount of
training data affects the performance of existing algo- i Release of 14,000 utterances for training and test,
rithms and limits the development of new algorithms; including speech and transcriptions;
and evaluation procedures document progress, and force * Release of almost 10,000 annotated utterances (7000
research choices in a world of limited resources. The training utterances and three test sets of 2300 ut-
recent rapid progress in spoken language understanding terances total), balanced by site;
owes much to our success in collecting and distributing a
large corpus of speech, transcriptions and associated ma- * A bug reporting and bug fix mechanism, to maintain
terials based on human-machine interactions in the air the quality and consistency of the training data;
travel domain. MADCOW has coordinated the multi-sitedat colecion nd valatin efort Th DAPA * An evaluation schedule that delivered training data
site data collection and evaluation effort. The DARPA and froze changes in the principles of interpretation1

Spoken Language community has long recognized that several months before the evaluation;
we were simultaneously developing evaluation method-
ologies and relying on these methods to evaluate systems o An experiment with "end-to-end" evaluation that
and to push the research forward. This tight feedback permits evaluation of system aspects not previously
loop has permitted us to extend our evaluation method- possible.
ology incrementally. This paper reports on the status of
the MADCOW-coordinated data collection effort and on Table 1 shows the breakdown of all training data and Ta-
recent evaluations. ble 2 shows the breakdown for just the annotated data2 .

The multi-site data collection paradigm [3, 4] distributes 2. Current Evaluation Methodology
the burden of data collection, provides data rapidly, ed-
ucates multiple sites about data collection issues, and When the ATIS task was developed in 1990 [9], lit-

results in a more diverse pool of data than could be ob- tle work had been done on formal evaluation of under-
tained with a single collection nitc. The ;u2ting data aThac awe thi- principles that dcfne how va-,ývis v"gue or ciif

ficult phrases are to be interpreted; see section 2.1 below.
"This paper was written the auspices of the the Multi-Site ATIS 2A class A utterance can be interpreted by itself, with no ad-

Data Collection Working group (MADCOW). In addition to the ditional context; a class D utterance requires an earlier "context-
authors, many other people, hsted under the Acknowledgements setting" utterance for its interpretation; and a class X utterance
section, made important contributions to this work. cannot be evaluated in terms of a reference database answer.

A-83



in some applications, wrong answers may be worse than
Site Speakers Scenarios Utterances "no
AT&T 50 176 1887 answer we have used a Weighied Error metric:
BBN 62 307 2277 follows:4

CMU 43 196 2480 WeightedError =
MIT 75 250 2265
MIT: old DB 96 320 2940 #(NoAnswer) + 2 * #(WrongAnser).
SRI 781 130 -:126
TOTAL 407 1379 13ý:S 2.1. The Evaluation Mechanism

The comparator-based evaluation method compares
Table 1: Multi-site ATIS Data Summary human annotator-generated canonical (",cference")

database answers to system generated answers. The
annotators first classify utterances into context-

standing for natural language interfaces e. In the ab- independent (A), context-dependent (D) and unevalu-
sence of a generally accepted semantic representation, able (X) classes. Each evaluable utterance (class A or
the DARPA SLS community focussed instead on "the D) is then given minimal and maximal reference an-
right answer," as defined in terms of a database query swers. The minimal reference answer is generated using
task (air travel planning). This permitted evaluation by NLParse 5 and the maximal answer is generated algorith-
comparing "canonical" database answers to the system mically from the minimal answer. A correct answer must
answers using a comparator program [1]. There was con- include all of the tuples contained in the minimal answer
sensus that coming to agreement on what constituted the ane no more tuples than contained in the maximal an-
right set of data from a database for any query answer- swer.
able via database retrieval (given proper definitions of
terms) would be far easier than coming to agreement on The Principles of Interpretation provides an explicit in-
a standard semantic representation. terpretation for vague natural language expressions, e.g.,

"red-eye flight", "mid-afternoon," and specifies other
The original evaluation methodology was defined only factors necessary to define reference answers, e.g., how
for context-independent (class A) utterances. However, context can override ambiguity in certain cases, or how
this left approximately half the data as unevaluable (see utterances should be classified if they depend on previ-
Table 2). Over the next two years, the evaluation ous unevaluable utterances. This document is a point of
method was extended to cover context-dependent queries common reference for the annotators and the system de-
(class D utterances), it was tightened by requiring that velopers, and permits evaluation of sentences that other-
a correct answer lie within a minimal answer and a max- wise would be too vague to have a well-defined database
imal answer (see section 2.1), and it was made more reference answer. The initial Principles of Interpreta-
realistic by presenting utterances in scenario order, as tion was implemented in 1990. The document is now
spoken during the data collection phase, with no infor- about 10 pages long, and includes interpretation deci-
mation about the class of an utterance. Thus, we now sions based on some 10,000 ATIS utterances. The doc-
can evaluate on approximately 75% of the data (all non- ument continues to grow, though over time fewer new
class X data - see Tables 2 and 4). Because, at least issues arise. It is remarkable that such a small docu-

3 This coincides with the beginnings of formal evaluation for ment has sufficed to provide well-defined interpretations
written text, via the Message Understanding Conferences (MUGs) for a corpus of this size. This demonstrates that rules
[81. The MUC evaluation uses a domain-specific filled template as for the interpretation of natural language utterances, at
the basis for evaluation. To date, the goal of a domain-independent least in the ATIS domain, can be codified well enough to
semantic representation, perhaps analogous to the minimal brack-
eting of the Penn Treebank database [2] for parsing, remains support an automatic evaluation process. Because this
elusive, procedure was explicit and well-documented, two new

sites were able to participate in the most recent evalua-
tion (November 1992).

Site class A Class D Class X Total
ATT 396 377.4 416 39.3% 247 23.3% 1059 -148% 4The decision to call a wrong answer twice as bad as not an-
CMU 539 37.5% 324 22.6% 573 39.9% 1436 20.1% swering was made to reflect an intuition that misinformation wasMIT 653937.7% 680438.7% 41239.6% 177 24.6% worse than explicit refusal to answer. Howeve,, a recent experi-
SRI 607 44.8% 582 43.0% 166 12.3% 1355 19.0% ment [5J showed that for one system, subjects were able to detect"Total 3063 42.9% 5382 33.1% 1712 24.0% 7134 190.0% a system error without losing any additional turns in 90% of theS.... .cases. In the remaining 10%, a system error caused the subject to

lose several turns before recovering, leading to a reduced estimated
weighting factor for system errors of 1.25.

Table 2: Distribution of the Annotated Training Data 5NLParse is a database access product of Texas Instruments.
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2.2. Testing on the MADCOW Data procedures in terms of our goals, to insure that our eval-
uation procedures can help us assess the suitability of

The test data selection procedure was designed to en-
sure a balanced test set. Test data for the November a particular technology for a particular application, andsurea blancd tst st. estdataforthe oveber to insure that benchmark scores will correlate well with

1992 evaluation were chosen using procedures similar to
user sat.isfaction and efficiency when the technology is

those for the November 1991 test [3]. As sites submitted

data to NIST, NIST set aside approximately 20% of the transferred to an application.

utterances to create a pool of potential test data; some The advantage of using a pre-recorded corpus for eval-
1200 utterances were included in the November 1991 test uation is clear: the same data are used as input to all
set; 1300 utterances were included in the November 1992 systems under evaluation, and each system's set of an-
test set. swers is used to automatically generate a benchmark

score. This approach provides a uniform input across
NIST's goal was to select approximately 1000 test utter- all Tems and re oves aninolment fromt

ances from the test data pool, evenly balanced among benchmark testing process (except that human annota-

the five collection sites (AT&T, BBN, CMU, MIT, and tors define the reference answers). Any annotated set of

SRI). Utterances were selected by session, i.e., utterances ta cane use repeate a osieratv tranng. How

occurring in one problem-solving scenario were selected
ever, some of these same strengths impose limitations onas a group, avoiding sessions that seemed to be extreme what we can evaluate.

outliers (e.g., in number of class X utterances, total num-

ber of utterances, or number of repeated utterances). First, there is the issue of the match between the refer-
Because the test pool contained only marginally more ence answer and the user's need for useful information.
utterances than were needed for the test, it was not pos- The method can count answers as correct despite sys-
sible to simultaneously balance the test set for number tem misunderstanding: e.g., a system misrecognition of
of speakers, gender, or subject-scenarios. The test set "Tuesday" that substitutes "Wednesday" may in a para-
contained 1002 utterances. The breakdown of the data phrase of the understanding lead the user to believe the
is shown in Table 3. answer is wrong, but if all flights have daily departures,

the database answer will be canonically correct. On the
NIST verified and corrected the original transcriptions, other hand, useful (but not strictly correct) answers will
However, some uncertainty about the transcriptions re- be counted wrong, because there is no "partially correct"

mained, due to inadequacies in the specifications for the

transcription of difficult-to-understand speech, such as category for answers.

sotto voce speech. After the transcriptions were veri- Second, mixed initiative in human-machine dialogue will
fled, the data were annotated by SRI to produce catego- be required for technology transfer in many spoken
rizations and reference answers. A period for adjudica- language understanding applications. But the evalua-
tion followed the test, where testing sites could request tion paradigm actively discourages experimentation with
changes to th.e test data categorizations, reference an- mixed initiative. A query that is a response to a system-
swers, and transcriptions. The final post-adjudication initiated query is classified as unevaluable if the user's
classification summary is shown in Table 4. Final evalu- response can only be understood in the context of the
ation results are reported in [6]. system's query. During evaluation, any system response

that is a query will automatically be counted as incorrect
Collecting Site Speakers Scenarios Utterances (since only database answers can be correct).
ATT 7; 1M/ 6F 22 200
BBN 7; 3M/ 4F 28 201 The use of pre-recorded data also preserves artifacts of
CMU 4; 4M/ OF 12 200 the data collection system. For example, much of the
MIT 10; 3M/ 7F 37 201 test data were collected using systems or components of
SRI 9; 5M/ 4F 19 200 systems to generate responses that are presumed to be
Total 37; 16M/21F 118 1002 less accurate than a human would be. As a result, the

data include many instances of system errors that affect
the user's next query. A user may have to repeat a query
several times, or the user may correct some error that

3. Limitations of the Current the data collection system (but not the system under

Evaluation evaluation) made. These are artificial phenomena that
would disappear if the data collection and evaluationThe current data collection and evaluation paradigm systems were identical.

captures important dimensions of system behavior.

However, we must constantly re-assess our evaluation
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Site Class A Class D Class X Total
ATT 48 (24.0%) 41 ( 20.5%) 111 ( 55.5%) 200 ( 20.0%)
BBN 97 (48.3%) 27 (13.4%) 77 (38.3%) 201 ( 20.1%)
CMU 76 (38.0%) 66 ( 33.0%) 58 ( 29.0%) 200 ( 20.0%)
MIT 100 (49.8%) 67 ( 33.3%) 34 (16.9%) 201 ( 20.1%)
SRI 106 (53.0%) 46 ( 23.0%) 48 ( 24.0%) 200 ( 20.0%)
Total: 427 (42.6%) 247 (24.7%) 328 (.32.7%) 1002 (100.0%)

Table 4: Breakdown of Test Data by Class

Finally, the current paradigm does not take into account 4.1. Experimental Design
the speed of the response, which greatly affects the over-
all interaction. Demonstration systems at several sites Ao exper ital evaluation t c tob eto assess feasibility of the new evaluation method. We
have begun to diverge from those used in benchmark defined a common experimental design protocol and a
evaluations, in part, because the requirements of demon- common set of subject instructions (allowing some lo-
strating or using the system are quite different from the cu
requirements for generating reference database answers. cavrito)EchsesumtdtoNSfurral

planning scenarios that had a well-defined "solution set".

These limitations of the comparator-based evaluation From these, NIST assembled two sets of four scenarios.

.preclude the evaluation of strategies that are fundamen- Each site then ran eight subjects, each doing four scenar-

tal research issues and that are likely to be crucial in ios, in a counter-balanced design. Five systems partici-

technology transfer. In particular, we need to develop pated: the BBN, CMU, MIT and SRI spoken language

metrics that keep human subjects in the loop and sup- systems, and the Paramax system using typed input.

port human-machine interaction. However, the use of
human subjects introduces new issues in experimental 4.2. Logfile Evaluation
design. Over the past year, MADCOW has begun to A novel feature of the end-to-end experiment was the
address these issues by designing a trial end-to-end eval- logfile evaluation. This technique, developed at MIT [7],
uation. is based on the logfile which records and timestamps all

user/system interactions. A human evaluator, using an
interactive program, 6, can review each user/system in-
teraction and evaluate it by type of user request, type

4. End-to-End Evaluation Experiment of system response, and correctness or appropriateness
of response. For user requests, the following responses

The end-to-end evaluation, designed to complement the were distinguished: 1) New Information, 2) Repeat,
comparator-based evaluation, included 1) objective mea- 3) Rephrase, or 4) Unevaluable. For system responses,
sures such as timing information, and time to task corn- the evaluators categorized each response as follows:
pletion, 2) human-derived judgements on correctness of
system answers and user solutions (logfile evaluation), Partially d Correct or Can't Decide;

and 3) a user satisfaction questonnaire. SSystem Initiated Directive: further evaluated as

The unit of analysis for the new evaluation was a sce- Appropriate, Inappropriate, or Can't Decide;

nario, as completed by a single subject, using a partic- Failure-to- Understand Message: no further evaluation;

ular system. This kept the user in the loop, permitting Diagnostic Message: further evaluated as Appropriate,

each system to be evaluated on its own inputs and out- Inappropriate, or Can't Decide.

puts. The use of human evaluators allowed for assess- The evaluator also assessed the scenario solution, ac-
ing partial correctness, and provided the opportunity to cording to whether the subject finished and whether the

score other system actions, such as mixed initiatives, er- answer belonged to the defined solution set.
ror responses and diagnostic messages. The end-to-end
evaluation included both task-level metrics (whether sce- To facilitate determination of the correctness of individ-
narios had been solved correctly and the time it took a ual system responses, we agreed to follow the Princi-
subject to solve a scenario) and utterance-level metrics 6

The program was developed by David Goodine at MIT; the

(query characteristics, system response characteristics, evaluator instructions were written by Lynette Hirschman, with

the durations of individual transactions). help from Lyn Bates, Christine Pao and the rest of MADCOW.
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pies of Interpretation, at least to the extent that an an- ning scenarios the subjects were asked to solve. Certain
swer judged correct by these Principles would not be scenarios posed serious problems for all systems: a few
counted incorrect. For this experiment, loglile evalua- scenarios posed particular problems for specific ystems.
tion was performed independently by Bill Fisher (NIST) However, the data suggest. that. there was a subset that
and Kate Hunicke-Smith (SRI Annotation), as well as by could perform a , 'asonable diagnostic function.
volunteers at MIT and BBN. This gave us experience in
looking at the variability among evaluators of different 5.2. Logfile Evaluation
levels of experience. We found that any two evaluators Somewhat unexpectedly, we found that logfile evalua-
agreed about 90% of the time, and agreement among tion was a useful tool for system developers in identi-
multiple evaluators decreased proportionally. fying dialogue-related I)robleirs in there systems. The

evaluator interface allowed for rapid evaluation (about
5. Lessons Learned 5-15 minutes per scenario). However, the evaluator in-

The experiment provided useful feedback on the risks structions appear to need refinement, the interface needs

and advantages of end-to-end evaluation, and provides minor extensions, anl most important, we need to de-

the basis for a refined evaluation procedure. For the ini- sign a procedure to produce a statistically reliable logfile

tial trial, we made methodological compromises in sev- evaluation score. In addition to the methods for achiev-

eral areas: a small number of subjects, no control over ing this reliabiltv that have been outlined in the pre-

cross-site subject variability, few guidelines in develop- vious section, we would also like to consider combining

ing or selecting scenarios. These compromises seemed assessments from evaluators.

reasonable to get the experiment started; however, the A remaining thorny problem is the definition of correct,
next iteration of end-to-end evaluation will need to in- partially correct, and incorrect answers. For this experi-
troduce methodological changes to provide statistically ment, we used the Principles of Interpretation document
valid data. to define a correct answer, so that we would not need to

develop a new document for these purposes. For the next
5.1. Sources of Variability evaluation, we need definitions th7ýf, reflect utility to the

Valid comparisions of systems across sites require control user, not just "canonical" correctness.

over major sources of variability, so that the differences Finally, we found that we could not rely on subjects to
of interest can emerge. The use of human subjects in the correctly complete the scenarios presented to them. In
evaluation creates a major source of variability, due to some cases, the subject was not able to find the answer,
differences in the subjects pools available at various sites and in other cases, the subject did not follow directions
and the characteristics of individuals. We can minimize regarding what information to provide in the answer.
some of these differences by, for example, by training all This made it difficult to compute accurate statistics for
subjects to the same criterion across sites (to account scenario-level metrics such as task completion and task
for differences in background and familiarity with the completion time; this problem was exacerbated by the
domain), by using many subjects from each site (so that limited amount of data we collected.
any one subject's idiosyncrasies have less of an effect on
the results), and by ensuring that procedures for subject 5.3. Summary and Conclusions
recruitment and data collection across sites are as similar
as possible (we made a serious effort in this direction, Lut Our goal in end-to-end evaluation is to create a pro-
more could be done to reduce the cross-site variability cedure that accurately assesses the usability of current
that is otherwise confounded with the system under eval- spoken language technology and provides useful feedback
uation). An alternative would be to perform the eval- for the improvement of this technology. To be useful, the
uation at a common site. This would allow for greater procedure must reliably identify differences between sys-

uniformity in the data collection procedure, it could in- tems and must embody a clear understanding of which

crease the uniformity of the subject pool, and would system attributes are desirable and should be improved

allow use of powerful experimental techniques (such as over time. In developing evaluation procedures that in-
within-subject designs). Such a common-site evaluation, volve human interactions, we need to carefully assess the

however, would pose other challenges, including the port validity of the measures we use. For example a measure

of each system to a common site and platform, and the such as the number of utterances per scenario may seem
complex design needed to assess potential scenario order relevant (e.g., the subject was frustrated with answers

effects, system order effects, and their interaction, and had to repeat a question several times), but in fact
may reflect irrelevant aspects of the process (the subject

Another source of variability is the set of travel plan- was intrigued by the system and wanted to push its lim-
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its in various ways). Meaningful evaluation will require decisions (in speech recognition, natural language pro-
metrics that have been systematically investigated and cessing and interface design), bringing spoken language
have been shown to measure relevant properties. systems closer to eventual deployment.
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INTEGRATING TWO COMPLEMENTARY APPROACHES TO

SPOKEN LANGUAGE UNDERSTANDING

Eric Jackson

SRI International
333 Ravenswood Ave., Menlo Park. CA 94025

ABSTRACT The systems described here have been developed
for the Air Travel Information System (ATIS) task.

A current goal in spoken language understanding This is the common task for sites participating ir the
research is to combine the robustness of domain-specific DARPA Spoken Language Systems project. The sys-
template fillers (e.g., script and case frame-based sys- temns have been developed and tested on actual sponta-
tems) with the syntactic coverage of parser-based sys- neous speech data collected from naive users presented
teins. This paper describes an integration of a pair of with air travel planning scenarios. The ATIS corpus
systems representing each of these types into a new sys- currently consists of over 10,000 such spoken
tem that takes advantage of their complementary utterances.
strengths.

THE TEMPLATE MATCHER
INTRODUCTION

The Template Matcher [3] was developed at SRI
Building a natural language system for wrine'n text specifically to handle the sorts of spontaneous speech

with high coverage is notoriously difficult; the range phenomena that are difficult for a parser-based system.
and variability of human language are tremendous. The The main operation of the Template Matcher is the fill-
task of building a spoken language system, however, ing in of domain-specific templates. For example. tem-
poses an additional set of challenges. For one thing. plates for the air travel domain include the flight, fare
current speech recognition systems are far from perfect; and ground transportation templates. Templates are as-
a 10% word-recognition error rate over a 1000-word sociated with slots, which are filled with information
domain is considered very good. Furthermore, difficult from the input sentence. So. for example, the input
phenomena such as run-on sentences, fragments, false sentence "Show me the flights from Boston to Dallas on
starts, flexible constituent ordering and infelicitous United" produces the following template:
word choice are especially prevalent in spontaneous
spoken language. These phenomena pose difficult [flight, [origin, BOSTON]. [destination, DALLAS],
problems for parser-based natural language understand- [airline, UNITED]]
ing systems, because the grammars they use are often
designed to expect well-formed complete sentences. Slots are filled by matching fixed phrases against the in-

Templa:e filling systems typically fill slots in do- put sentence. The origin slot, for example, may be
main-specific templates by matching fixed patterns filled if part of the sentence matches iy of the follow-
against portions of an input string. These systems may ing patterns: "from <airport-or-Oity>," "out of
be able to produce interpretations without accounting <airport-or-city>" or "between <airport-or-city> and
for every word in the utterance, and without knowledge <airport-or-city>."
of the syntactic structure of the entire utterance. This The system builds a template with the set of slots
fact lends these systems a degree of robustness to that maximizes use of the words of the sentence
recognition errors, and to the difficult and unexpected (ignoring small function words). It then assigns a score
phenomena often encountered in spontaneous speech. to the resalting filled template, which reflects how much

It is often impossible, however, to correctly inter- of the input sentence was used in building the template.
pret a sentence without knowing its syntactic structure. The higher the score, the greater the likelihood that the
The syntactic relation of a word or phrase to other parts template is correct. The system decides whether to an-
of the sentence may be impossible to determine from the swer the query by comparing the score to a threshold
local context of the word or phrase, and yet may be nec- parameter. This threshold allows for a certain amount
essary for grasping the meaning of the sentence. The of risk trade-off. The system can set the threshold low
work reporttd here attempts to combine into a single to maximize the number of correct answers, or it can set
system the capabilities of parser-based natural language the threshold high to minimize the number of wrong an-
systems with the robustness of template fillers. swers.
Similarly motivated work has been done on building The ability of the Template Matcher to successfully
semantic interpretations from partial parses (e.g., [1, interpret most spontaneous speech in the ATiS domain is
2]). Our work differs primarily in that our basic inter- testified to by the results of the latest DARPA bench-
pretation mechanism is temp.ate filling, mark tests. On the natural-language-only test, where
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systems -re given the correct tran,;cription of each ut- Since a botorn-uo parser does not impose any left.
terance as input, the system achieved the following re- context constraints. it will hypothesize every possible
suits: gap at every position of a sentence, even when there are

no potential gap-fillers. Since gaps do not require a
Right Wrong No Answer match against the input string, .his results in a large
533 60 94 number of hypotrheses that lead nowhere, which, in turn.

negatively impacts parsing efficiency. Gemini avoids
while on the spoken language system test, where utter- this problem by not doing pure bottom-up parsing. It
ances are passed through the speech recognizer to the imposes limited top-down constramts to cut down on the
natural lan, uage component, the results were: proliferation of hypotheses. The set of categories in the

grammar are partitioned into those that are context-de
Right Wrong No Answer vendent and those that are context-independent. Conter',
444 69 174 dependent categories are hypothesized only when pre-

dicted by !eft context. For example, categories contain-
(Systems are evaluated on a subset of the ATIS corpus ing wh-gaps (such as a verb phrase with an object gap)
that has not previously been seen by system developers, are context dependent; they are only hypothesized if a
Responses are evaluated by comparing them with the wh-element appears earlier in the sentence. The Gemini
'•4 aabase answers produced by trained annotators. A parser can easily be parameterized to impose nmore or
wrong answer is considered twice as bad as no answer.) fewer top down constraints.

Despite these promising results, it is clear that the Gemini also can apply sorts restrictions as it parses.
Template Matcher is incapable of correctly interpreting So. for example, although the sentence, "How many
rr .ny types of utterances, since it ;,as no knowledge of flights fly on Lrge aircraft after five PMT' has at least
syntactic structure. Although it might be possible to two possible parses (depending on whether "after five
exiend -he Template Matcher to have extremely high PM" modifies "aircraft" or "fly"), Gemini knows that a
coverage oi actual speakers' utterances in the ATIS do- time restriction may modify a flying event, but not an
main, its coverage could never be perfect. aircraft, so if sorts restrictions ire applied, only one of
Furthermore. in other domains it might noi be possible the two parses will be produced.
to obtain as good coverage with the same sort of system. On a corpus of 2139 sentences, Gemini generates at

least one parse for 2039 (95%). It generates parses that
GEMINI meet sorts restricticois for 1915 (90%).

In parallel wiut the development of the Template INTEGRATION OF THE TWO SYSTEMS
Matcher, SRI has been developing a parser-based natural
language system known as "Gernini." Thus, an obvious The new system is an enhancement of the Template
approach to building a system that combined robust in- Matcher that makes use of structural information found
terpretation with parsing :apabilities was to integrate by Gemini in building templates. Filled slots are identi-
these two existing systems whose strengths are comple- fied by pattern matches against the input string, and then
mentary. passed up the phrase structure tree during which they

Gemini, an extension and reimplementation of the may be combined or altered if certain conditions obtain.
Core Language Engine [4], is based upon an efficient Two mechanisms are invoked to select the best parse
bottom-up parser and a domain independent unification when there are multiple candidates: 1) the sorts package
grammar. It incorporates a bottom-up parser [5] so that mentioned above which filters out many semantically
an integrated system of the sort we are describing here anomalous parses, and 2) a syntactic parse-preference
can be successful when the parser is unable to parse the mechanism that implements an algorithm due to Pereira
entire input utterance. For a pure bottom-up parser favoring low at'achment [6]. A template is men b jilt
finds all the structure it can in the utterance, while a that accounts for as many words and constructions in the
top-down, left-to-right parser ceases to find structure input as possible. This approach allows u- to handle
beyond the point in the sentence where it gets stuck. In problems such as modifier attachment and scope resolu-
many cases, the partial structure thit only a bottom-up tion that would be difficult or imvossible for a pure
parser would finu is what is needed to help the Template template-matching system.
Matcher correctly interpret the utterance. For example, consider the problem of modifier at-

TJnfortur'-tely, pure bottom-up parsing is ineffi- tachment posed by the following sentence:
cient, largely because of the problem of gaps. Gaps are
positions in an input sentence where a category is real- "Show me flights arriving in Boston on 747s before
ized by the empty string. For example, in the sentence ten."
"What cities does American fly to from Boston?" an
empty noun phrase appears between "to" and "from." The problem for the Template Matcher is that the time
Gaps must be filled by material elsewhere in the sen- specification "before ten" should constrain the flight ar-
tence; in our example. the phrase "what cities" fills the rival time, but there is no way to tell this by looking at
NP gap. In contrast, the string "American flies to" will the phrase "before ten" in isolation. To know th't the
not parse because, although an NP gap may be hypothe- restriction constrains the arrival time, and nnt the
sized after the word "to," there is nothing to fill it. departure time, the system needs to know that "before
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ten" modifies "arriving." Step 4: Since a syntactic ambiguity has produced
In order to see how the system works, let us exam- corflicting sets of slots, the parse preference mechanism

inj how the system would process the above example. is now invoked, which favors "low attAchment" (It also
Step 1: The Template Matcher locates all the favors something called "minimal attachment" which

phrases that match slot-filling patterns (see Figure 1). will not be discussed.) We will render the notion of low
Notice that a phrase may fill more than one slot. For attachment precise below, but the basic idea should be
example, the phrase "in Boston" may fill the clear; the tree in the middle in Fig. 2 is preferred be-
ground-city slot of a ground transportation template cause the "before ten" phrase is attached lower than in
(e.g., "Show me ground transportation in Boston"). or the tree on the left.
the "in" slot of a flight template. The "arrive" and "in" The main insight of the Pereira paper 161 on which
slots are actually special temporary slots; they will never the parse preference mechanism is based was that low
appear in a template. In certain circumstances, as we attachment could be optimized in a shift-reduce parser
shall see, these slots may combine to form a destination by preferring shifts over reduces during the course of
slot, which does appear in the final template. parsing. This preference, however, can be equally well

Step 2: The Gemini parser is run and builds the be imposed as a post hoc comparison metric on corn-
left two parse trees shown in Figure 2. The tree on the plete parse trees. To compare two parse trees, find the
far right will not be built because it violates sorts re- sequences of shift-reduce operations needed to produce
strictions (time restrictions do not modify 747s). those trees, then find the first position &t which there is

Step 3: When we pass slots up the two parse trees, a shift operation in one sequence and a reduce operation
the "arrive" and "in" slots combine to form a in the other. The tree corresponding to the sequence
"destination" slot with "BOSTON" as its filler. In addi- with the shift operation is the preferred one.
tion. in one tree, the "arrive" and "before" slots com- To construct the sequence of shift and reduce op-
bine to form an "arriving-before" slot, while in the erations corresponding to a given parse tree, do a post-
other tree. the "before" slot turns into a order traversal of the tree, and, at each step, add a shift
"departing-before" slot, because that is the default. The to the sequence, if the current node is a leaf, and, add a
nodes where slots are combined or altered are circled reduce, if it is not. Applying this procedure to the two
(Figure 2). parse trees above (and ignoring unit reductions), we see

[ground-city,
BOSTON)
[in,

[arrive, yea) BOSTON) (aircraft, 747) [before, 10)

Show me flights arriving in Boston on 747's before ten.

Fig. I - Filled slots for the example.

Ifghs flights

flig~hts 
before ten 

ibefOre ten arriving on

rvon 747s in Boston
ariigarriving bfrtn

in Boston in Boston before ten

[(destination. BOSTON]. ffdestination, BOSTON],
[aircraft. 747], (aircraft, 747).
(departing_bofore, lol] (arrivingbefore, 10]]

Figure 2 - Parse trees for the example.
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that the tree on the left corresponds to the sequence ACKNOWLEDGMENTS
"SSSSRRSSRR&SSRR," while the tree in the middle
corresponds to the sequence "SSSSRRSSRRSRRR." Gemini has been designed and built by Doug
Since, in the eleventh position, the first sequence has a Appelt, John Bear, Lynn Cherny, John Dowding. Mark
reduce while the second sequence has a shift, the second Gawron, Bob Moore and Doug Moran. Doug Appelt is
sequence (and hence the tree in the middle) is preferred. responsible for the template-to-database-query transla.

Step 5: Now that the appropriate set of slots has tion code. Bob Moore in'>plemented the parse prefer-
been found, the system inserts them in a flight template ence mechanism.
and passes that template to the database query generation This research was supported by the Defense
component. A database query is produced and the ap- Advance Research Projects Agency under Contract
propriate data are retrieved and presented to the user. N00014-90-C-0085 with the Office of Naval Research.
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eral way. The integrated system handles negation scope
in much the same way as it handles modifier attachment.
Filled slots are passeu .p the phrase structure tree, and
under the right conditions wrapped in the negation op-
eratQr. For example, when a verb phrase is combined
with the lexical item "not" to form a new verb phrase,
the filled slots associated with the embedded verb phrase
are embedded in the negation operator.

Of course, there are many cases where something
more sophisticated is needed. Consider, for example,
the query "Show me flights not arriving in Dallas after
five P M." Presumably the correct response in this case
is to show all flights that do have a destination of Dallas
but do not arrive after five P M. Our current system
would show, in addition, all the flights in the database
not flying to Dallas. Despite this, the current treatment
of negation seems to be an improvement over what was
available with the Template Matcher alone.
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A Template Matcher for Robust NL
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Abstract discontinuity. The third example would be straightfor-
In this paper, we describe the Template Matcher, a sys- ward, except for the fact that the verb "servicing" has
tern built at SRI to provide robust natural-language been substituted for the more conventional "serving."
interpretation in the Air Travel Information System Despite the difficult linguistic problems posed by these
(ATIS) domain. The system appears to be robust to queries, the information they request is very simple-
both speech recognition errors and unanticipated or dif- just fares, flights, and airlines for travel between a pair
ficult locutions used by speakers. We explain the mo- of specified cities.
tivation for the Template Matcher, describe in general Consideration of examples such as these has led us to
terms how it works in comparison with similar systems, modify our approach to natural-language processing in
and examine its performance. We discuss some limita- spoken language systems. The key modification to our
tions of this approach, and sketch a plan for integrating system is the addition of a Template Matcher to pro-
the Template Matcher with an analytic parser, which we vide robust interpretation for the most common types
believe will combine the advantages of both. of requests in the task domain. The Template Matcher

achieves robustness in two ways: (1) it provides an inter-
pretation when not all the words or constructions in an

Introduction utterance have been accounted for, and (2) it provides
One of the conclusions SRI has drawn from working with a mechanism for trading-off the risk of wrong answers

the TIS common task data is that, even with a very with the degree of coverage. These properties arise from
coneýý ained user task, there will always be unanticipated a mechanism that assigns scores to interpretations, pe-
expressions and difficult constructions in the spoken lan- nalizing interpretations that do not account for words
guage elicted by the task that will cause problems for in the utterance. The bulk of this paper is devoted to
a conventional, analytical approach to natural-language describing the Template Matcher and discussing its per-
processing. However, it also seems that requests for only formance as a stand-alone system for interpretation of
a few types of information account for a very large pro- natural-language queries for the ATIS task. Later in the
portion of the utterances produced by users performing paper we consider how such a module might best fit into
a task like air travel planning. This point is illustrated a complete system for spoken-language understanding.
by some of the more difficult queries in the June 1990
test set:

Give me a list of all airfares for round-trip tick- Description of the System
ets from Dallas to Boston flying on AmericanAirlines. The Template Matcher operates by trying to build "tem-plates" from information it finds in the sentence. Based
Show me all the flights and their fares from San on an analysis of the types of sentences observed in the
Francisco to Boston on June second. ATIS corpus, we devised four templates that account

I need information on airlines servicing Boston for most of the data: flight, fare, ground transportation,
flying from Dallas. and meanings of codes and headings. We have recently

added several new templates, including aircraft, city, air-
In the first example the phrase "flying on American line, and airport. Templates consist of slots which the

Airlines" apparently modifies "tickets," with the flights Template Matcher fills with information contained in the
that the tickets are for apparently being the implied sub- user input. Slots are filled by looking through the sen-
ject of "flying." The second example seems to contain tence for particular kinds of short phrases. For example,
a discontinuous constituent, "flights ... from San Fran- "from" followed by an airport or city name will cause
cisco to Boston on June second," which is the antecedent the "origin" slot to be filled with the appropriate name.
of the pronoun "their" that occurs in the middle of the The sentence
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Show me all the United flights Boston to Dallas would be much more likely as a follow-up question than
nonstop on the third of November leaving after as a context-independent query.
four in the afternoon.

would generate the following flight template:

[llight,[stops ,nonstop], Comparison with Other Systems
[airline,UA), Systems using the basic idea behind the Template
[origin,BOSTON], Matcher go back as least as far as the SAM system at
[destination,DALLAS], Yale [2], and include the Phoenix system at CMU [3, 4]
[departing..alter, [1600)), and the SCISOR system at General Electric [5] as re-

cent examples. There is also a degree of similarity to

The template score is basically the percentage of words "case-frame"-based parsing methods [6, 7]. The main

in the stntence that contribute in some way to the build- distinction is that the slots in our templates are domain-

ing of that template. Given an input sentence, the Tern- specific concepts rather than general linguistic or con-

plate Matcher constructs one template'of each sort, and ceptual cases.

the one with the best score is used to construct the Of these precursors, the Phoenix system seems most
database query, provided its score is greater than a cer- similar to the Template Matcher. Like the Template
tain "cut-off" parameter. The cut-off parameter is what Matcher, the Phoenix system has templates (which they
permits the risk trade-off mentioned above: the higher call "frames") with slots that get filled with information
the cut-off, the more conservative the system is in at- from the sentence. The scoring mechanisms of the two
tempting to produce a response. Words can contribute systems are similar, but not identical. For both, the
to a score in different ways: words that fill a slot (e.g., basic score of an interpretation is the number of words
"Boston") add to the score, words that help get a slot in the sentence that the interpretation accounts for. In
filled (e.g. "from") also add to the score. Some words the Phoenix system, for a word in a sentence to count
may not contribute to the interpretation, but nonethe- for an interpretation's score, it must help fill some slot in
less confirm the choice of a particular template (e.g., that interpretation's frame. For the Template Matcher,
"downtown" for the ground transportation template), the word will also count if it is an "ignore" or "confirm"
and hence are added to the score for that template. word as discussed above.
Other words are ignored for the purposes of scoring (e.g., There are several other differences between the scoring
"and," "please," "ok," and "show"), since they do not mechanisms of the two systems: The Template Matcher
tend to confirm particular templates. punishes templates that do not have a keyword present

In certain cases the Template Matcher may modify the in the sentence, and the Template Matcher requires that
basic score of a template. Each template has a set of key at least one slot in a template be filled. Also, the two
words (or key phrases). The presence of these words or systems behave differently when an attempt is made to
phrases in a sentence is a strong indication that the asso- fill a single slot with two different fillers. The Template
ciated template is the appropriate one for that sentence. Matcher will abort a template if this happens, while
For the flight template, the keywords include words like the Phoenix system will fill the slot with the second of
"flight," "fly," and "go"; for the fare template, words the two possible fillers. The latter approach will handle
and phrases such as "how much," "fare," and "price" certain types of false starts, but might be expected to
are examples; for the meaning template, examples in- yield more incorrect answers in other situations. Finally,
dude "what is," "explain," and "define." If none of a CMU is nut currently using a cutoff to weed out bad in-
template's key words are present in a sentence then that terpretations, although given the existence of a scoring
template's score is docked by a certain keyword punish- mechanism in their system, this is something they clearly
ment factor, which varies from template to template. In could do.
most cases the lack of a keyword will prevent the asso-
ciated template from scoring above the cut-off.

There are two situations in which the Template
Matcher will "abort" a given template, that is, give it Results
a score of zero and cease processing it. First, if the sys-
tern tries to fill a slot in a certain template with two After two weeks of development this system was tested
different values, that template is aborted. Since we have on the June 1990 ATIS test set. This was a fair test to
no better than a fifty-fifty chance of guessing which is the the extent that the implementor of the matching rou-
correct filler, we are better off not attempting any an- tines and the templates themselves (Jackson) had not
swer. Second, if a template has no slots filled, it will re- examined the data from this test set prior to the eval-
ceive a score of zero. This restriction is relaxed when the uation. (Moore had noted, however, that the test set
Template Matcher is operating in "context-dependent" queries seemed amenable to a template-matching ap-
mode, where follow-up questions are expected. A query proach). For various values of the cut-off parameter we
like "show me the fares," which would not fill any slots, obtained the results shown in the following table.
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Cut-off Right Wrong No Answer Show me flights returning from Dallas into San
0.000 55 13 22 Francisco by ten P M.
0.833 42 4 44
1.000 37 2 51 This sentence is a good example of the need for syn-

tactic information. The problem is that the Template
(These results were determined by visual inspection of Matcher cannot tell that the phrase "by ten P M" mod-
the templates; the database retrieval code was not imple- ifies "returning," and thus constrains the arrival time.
mented at this point.) The conclusion we drew from this By default, it treats the "by" phrase as restricting the
test is that a template-matching approach could quickly departure time, and thus misinterprets the query.
yield results that were competitive with the some of the
better results reported in the original June 1990 ATIS What is an A fare?
test.

After completing the implementation of the system The problem here is that "A" is ambiguous; it may
and extensive development using the ATIS training data, be either the indefinite article or a fare class code. We
we used the Template Matcher for the February 1991 have been forced to leave the fare class code "A" out of
ATIS class A evaluation, in both the NL and SLS tests. the Template Matcher lexicon. Adding it would do more
The results as measured by NIST are shown below, harm than good, for we would then misinterpret every

occurence of the phrase "a fare" (with the indefinite ar-
Test Right Wrong No Answer ticle), as in "Give me a fare from Boston to Dallas."
NL only 109 9 27 Syntactic information could help resolve this ambiguity,
SLS 96 11 38 as could speech information, since the determiner "a"

We used a cut-off of 0.8 for this evaluation, as we had and the letter "A" have different acoustic properties.

previously determined from training data that this value List the fares for Delta flight eight oh seven
should come close to optimizing the number of right an- and Delta flight six twenty one from Dallas to
swers minus the number of wrong answers.

The system for the SLS tests was a serial connection
of the version of SRI's DECIPHER system used in the Conjunctions of complex noun phrases are beyond the
ATIS SPREC evaluation and the Template Matcher de- Cojntnsfcmpenunhresaebydtescope of the Template Matcher as it currently stands.
scribed above. The answers reported in the SPREC eval- The system could be modified to handle such phenom-
uation were edited to be in lexical SNOR format and ena, but an analytical grammar might be the more nat-
run through the Template Matcher exactly as in the ural tool for the job.
NL tests. It is interesting to note the relatively small
degradation from the NL to the SLS results, despite a Do you have to take a Y N flight only at night?
18.0 percent word error rate in the speech recognition;
this seems to indicate the robustness of the Template This is an example of a sentence where all the words
Matcher to recognition errors. contribute to a certain template (the flight template, in

We had not planned to participate in the D1 evalua- this case) and yet that template is not the correct one.
tion, but at the request of NIST, we did those tests as
well, taking context into account by using the answer to
the first query in the D1 pair to restrict the database A New Architecture
search in answering the second query, the same tech- As the examples in the previous section suggest, the
nique used in our ATIS demo system. In addition, the Template Matcher by itself is probably not the ulti-
Template Matcher was run in context-dependent mode mate solution to the problem of robust interpretation of
for the second query of each D1 pair. The results on natural-language queries. We believe that the template-
the second queries of the pairs as measured by NIST are matching approach and an analytical parser-based ap-
shown in the table below. proach have complementary strengths and that an ap-

Test Right Wrong No Answer proach that combines both of them is likely to be ulti-
NL only 122 3 13 mately superior than either one alone. We have therefore
SLS 15 11 12 begun developing a new architecture for language pro-

cessing in spoken language systems that combines the
We have not yet analyzed why there was a greater degra- two approaches. Our basic strategy will be to use the
dation in going from the NL to the SLS results in the analysis produced by the parser whenever we can, but
DI tests. to fall back on the Template Matcher when the parser-

based system fails to produce a complete analysis. It is
our conjecture, supported at least in part by the best

Limitations results reported in the June 1990 ATIS evaluation, that
In this section, we discuss some sentences that cause an analytical, parser-based approach can be designed so
problems for the Template Matcher that are not easily that when it succeeds in providing a complete analysis
resolvable, of the input, that analysis has a very high probability
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of being correct. With the Template Matcher it seems tance constraints not captured by N-gram models is il-
that there will inevitably be a larger possibility for error, lustrated by an utterance such as "What airlines that
because it uses strictly less of the information available serve Boston fly 747s?" If we want to predict the like-
in the utterance than a parser. In particular, our Tern- lihood of "fly" occuring in this context, the preceding
plate Matcher can ignore words; it ignores order; and it word "Boston" gives us essentially no information. If,
has almost no notion of structure. By using the Tem- however, we have identified "What airlines that serve
plate Matcher as a backup to the parser-based system, Boston" as a noun phrase whose lexical head is "air-
we eliminate the possibility of the Template Matcher get- lines" then the likelihood of a verb whose lexical head is
ting a wrong interpretation of something that could be "fly" should be relatively high.
successfully analyzed by the parser. The incorporation of a probabilistic element into the

A second reason for running the Template Matcher system raises a number of other interesting possibilities,
after the parser is to enable the Template Matcher to including incorporation of probabilistic scoring based on
use partial results of parsing in its operation. Our cur- observations of likelihoods of particular templates for
rent Template Matcher uses only single words and fixed sentences in the corpus, of particular slots for each tem-
phrases as key words or slot fillers. We are in the pro- plate, and of particular words for each slot; and the pos-
cess of extending the Template Matcher so that it uses sibility of using the Template Matcher itself as the basis
whole phrases that have been identified by the parser of a statistical language model to guide recognition.
in attempting to analyze the entire utterance. For ex-
ample, we saw that the Template Matcher is unable to
analyze a phrase as complex as "returning from Dallas Summary
into San Francisco by ten P M." Generalized to work In sum, the Template Matcher represents a complemen-
from parsed phrases, the Template Matcher might be tary approach to traditional natural-language process-
able to successfully interpret a complex utterance con- ing. It has the virtues of robustness and broad coverage
taining this phrase even if the entire utterance could not of many linguistic variants for requests for specific types
be parsed. Additionally, running the Template Matcher of information. Although we have not discussed the issue
on parsed phrases should cut down on the sheer number of computational efficiency in this paper, the Template
of particular word patterns that have to be included in Matcher is noticably faster than a typical parser. The
the template specifications. approach also has the advantage of rapid development

The use of robust interpretation methods changes the time which should enhance portability to new domains.
way in which the constraints embodied in a grammar
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Abstract with that category. Grammatical unification is then im-
SRI International participated in the June 1990 Air plemented simply as term unification in Prolog, which is
Travel Information System (ATIS) natural-language the implementation language used in the system.
evaluation. This report briefly describes the system In the semantic interpretation phase, logical form ex-
that SRI used in the evaluation, analyzes SRI's results, pressions are computed bottom-up by applying semantic
and makes some recommendations for changes in the interpretation rules keyed to the syntax rules. Terms in
database structure and data collection system to be used the logical form language have semantic sorts associated
for future ATIS evaluations. with them, and functors are restricted with respect to

the sorts of their arguments. These sort restrictions are
applied as the logical forms are constructed, acting as

The SRI ATIS System a filter on the structures produced by the syntactic and
The natural-language processing system used by SRI in semantic rules. The outputs of the semantic interpre-

the June 1990 ATIS evaluation is a derivative of the Core tation phase are quasi-logical forms in which the scope

Language Engine (CLE) developed at SRI's Cambridge of quantified noun phrases has not yet been determined.
Research Centre in Cambridge, England [1]. At present, Quantifier scope is assigned in the next phase of process-

the main processing components of SRI's ATIS system ing.
are taken from the CLE, while the grammar, semantic At this point in processing, a database-independent
interpretation rules, and lexicon are substantially new. formal representation of the meaning of the query has
The system divides query processing into the following been assigned. This is transformed into a database
phases: query, principally by replacing the logical-form constants

and predicates derived from the lexicon with database
* Lexical lookup predicates and constants. The query is then re-ordered,

if necessary, to optimize database retrieval, and the an-
* Syntactic parsing swer is retrieved from the database, which is stored as a

set of Prolog clauses.

* Semantic interpretation and selectional filtering

* Quantifier scoping Analysis of Results

* Database query generation In the blind test conducted for the June 1990 ATIS eval-

9 Query optimization uation, out of 90 test queries, the SRI system produced
correct answers for 25, incorrect answers for 5, and no

* Database retrieval answer for 60. Thus, the dominant factor in the perfor-
mance of the SRI system was that most queries failed

The syntactic and semantic rules used in the parsing to get through all stages of processing. Table 1 displays
and interpretation phases are expressed in a unification- the number and percentage of the queries that failed to
based formalism. The parser is based on a left-corner get past various levels of processing.
parsing algorithm for context-free grammar that has These numbers should be regarded at best as only an
been generalized to apply to unification grammar by sub- approximation of the performance of the different com-
stituting unification for identity checks in dealing with ponents of the system, for two reasons. First, no attempt
gramatical category expressions. An attribute/value no- has been made to judge the correctness of the output of
tation for feature constraints is provided for the grammar individual system phases, only to determine whether the
writer, but this notation is compiled into ordinary term phase produced an answer at all. Second, the failure rate
structures by assigning, for eaich major category symbol, of the later phases of processing would probably have
an argument position for each feature that can occur been higher if more queries had gotten past the earlier
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Level Number_ Percent be modified to present less information in response to
Level Number Percent most queries, but to present that information in a fuller,
Lexicon 1 1.1 less abbreviated form. It has been widely noted that
Parsing 14 1 5.5 about one-third of the ATIS queries collected so far are
Interpretation 28 31.1 about the meaning of codes or abbreviated column head-
DB query gen. 17 18.9 ings in the displays, rather than about the domain. If

fewer columns were presented in each display, it would be
possible to avoid the use of many of these abreviations.
Moreover, it might prompt subjects to ask more follow-
u-- questions to retrieve the information not displayed,

phases of processing. generating a wider range of queries in the domain of air
With these caveats, the results seem to indicate that travel planning.

most of the difficulties arose in the semantic interpre- Implementing this recommendation will require
tation phase and the database query generation phase. changing not only the displays, but also the structure
The grammar seemed to provide fairly good coverage of the database, so that database tuples that differ only
of the syntactic constructions used, and the lexicon per- in information not displayed to the subject can be elimi-
formed surprisingly well given that the vocabulary in the nated. Otherwise, the subject would see what appear to
test was completely uncontrolled. Undoubtedly, many of be duplicate answers in the display.
the parsing and interpretation failures were due to the A number of other changes to the structure of the
absence of some of the necessary lexical entries for par- database would also seem to be desirable. One signif-
ticular words, but almost no words in the test material icant problem is the status of connecting flights. We
were totally absent from the lexicon. believe it is important to devote some thought and at-

The semantic rules and the database query genera- tention to restructuring the database to put connect-
tor are, in fact, the parts of the system that are the ing flights on an equal footing with direct flights in the
most recent in origin and must be regarded as far from ATIS database. Currently, these are not even listed in
complete, independently of how they performed on this the flight table, so that requests for all flights that meet
evaluation. Our main conclusion, then, is simply that certain constraints result in information only about di-
much more work is needed on these parts of the system. rect flights. As a result there are almost no queries about

connecting flights in the ATIS data, perhaps because the
subjects are not aware of their existence. A related issue

Recommendations is that there is no fare information on connecting flights,

In the course of working with the ATIS database and de- because it is not presented in the printed OAG. We be-

velopment data, it seemed to the SRI team that there are lieve that if fare information for connecting flights cannot

a number of changes in the database structure and the be obtained from OAG, then reasonable fares should be

data collection system that would result in more inter- computed for them.

esting data being collected, and that would make system These seem to us to be the most important database

development easier for ATIS system builders. The phi- and data collection system issues that need to be ad-

losophy that Texas Instruments followed in setting up dressed for future ATIS evaluations, but there are many

the data collection system was to present information to other smaller issues as well. We therefore suggest that a

the subject in a way that mirrored as closely as possible task force should be created to address these issues and

the way the information is presented in the printed Of- decide on changes to be implemented for future ATIS

ficial Airline Guide (OAG). We believe that an attempt evaluations.

should be made to tailor the presentation of informa-
tion to the capabilities of eventual interactive spoken- References
language computer systems rather than the printed page.
The current ATIS data collection system presents a lot [1] Alshawi, et al, Interim Report on the SRI Core

of information to the subject in response to most queries, Language Engine, Technical Report CCSRC-5, SRI

but does so by using many abbreviated codes and col- International, Cambridge Research Centre, Cam-

urr.n headings that are compressed in order to fit as much bridge, England, 1988.

information as possible on one line of the screen. This
is appropriate for a printed document, because of the
difficulties of cross-referencing mutiple tables in differ-
ent parts of a printed volume, and because of the need
to keep the physical size of the volume down to man-
ageable proportions. Neither of these reasons applies to
an interactive spoken language computer system where
cross-referencing is easly performed by the system, and
much larger volumes of data are easily handled.

We would recommend that the data collection system
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Efficient Bottom-Up Parsing
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Abstract Pure Botton,-Up Parsing
This paper describes a series of experiments aimed at The first parser we implemented was a straightforward
producing a bottom-up parser that will produce partial "naive" implementation of the CKY algorithm [3, 4]
parses suitable for use in robust interpretation and still adapted to unification grammar. In this algorithm, a
be reasonably efficient. In the course of these experi- "chart" is maintained that contains records, or "edges,"
ments, we improved parse times by a factor of 18 over for each type of linguistic category that has been found
our first attempt, ending with a system that was twice between given start and end positions in a sentence. In
as fast as our previous parser, which relied on strong context-free parsing, these categories are simply the non-
top-down constraints. The major algorithmic variations terminal symbols of the grammar. In a unification gram-
we tried are described along with the corresponding per- mar, they are complex structures that assign values to
formance results. particular features of a more general category type.

Our naive algorithm simply seeds the chart with edges
for each possible category for all the words in the sen-
tence, and then works left to right constructing addi-
tional edges bottom-up. Each time an edge is added to

Introduction the chart, the grammar is searched for rules whose last
category on the right-hand side matches the edge just

Elsewhere (1] we describe a change in our approach to added to the chart, and the chart is scanned back to the
NL processing to allow for more robust methods of in- left for a contiguous sequence of edges that match the
terpretation. One consequence of this change is that it remaining categories on the right-hand side of the rule.
requires a different type of parsing algorithm from the If these are found, then an edge for the category on the
one we have been using. In our previous SLS work, we left-hand side of the rule is added to the chart, span-
have used a shift-reduce left-corner parser incorporating ning the segment of the input covered by the sequence
strong top-down constraints derived from the left con- of edges that matched the right-hand side of the rule.
text, to limit the structures built by the parser [2]. With When measured with our test grammar and test cor-
this parser, no structure is built unless it can combine pus, our implementation of this algorithm is almost nine
with structures already built to contribute to an analysis times slower than our original shift-reduce parser. We
of the input as a single complete utterance. If we want conjectured that one significant problem was the uncon-
to find grammatical fragments of the input that may be strained hypothesization of empty categories or "gaps."
of use in robust interpretation, however, such strong use Our grammar, like many others, allows certain linguis-
of top-down constraints is not appropriate, tic phrase types to be realized as the empty string in

To address this issue, we have built and measured the order to simplify the overall structure of the grammar.
performance of a number of bottom-up parsers. These For example, "What cities does American fly to from
parsers use the same unification grammar as our shift- Boston?" is analyzed as having an empty noun phrase
reduce parser, but they do not impose the strong top- between "to" and "from," so that most of the analysis
down constraints of the original. These experimental can be carried out using the same rules that are used to
parsers fall into two groups: purely bottom-up parsers analyze such sentences as "Does American fly to Dallas
and bottom-up parsers that use limited top-down con- from Boston?" Because empty categories are not di-
straints. The experiments were performed using a fixed rectly indicated in the word string, our naive bottom-up
grammar and lexicon for the Air Travel Information Sys- parser must hypothesize every possible empty category
tem (ATIS) domain, and an arbitrarily selected test cor- at every point in the input.
pus of 120 ATISO training sentences. The test grammar To address this point, we applied a well-known trans-
could produce complete parses for 79 of these 120 sen- formation to the grammar to eliminate empty categories
tences. by adding additional rules. For each type of empty cat-
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egory, we found every case where it would unify with a Eliminating unit productions by use of the link ta-
category on the right-hand side of a rule, performed the ble and accessing the grammar rules through the skele-
unification, and deleted the unified empty category from tal chart made the parser substantially faster, but this
the rule. For example, if B can be an empty category parser is still almost three times slower than the shift re-
then from A - BC we would derive the rule A -. C, duce parser on our test corpus using our test grammar.
taking into account the results of unification. When all At this point, we seemed to have reached a practical
such derived rules are added to the grammar, all the limit to how fast we could make the parser while still
empty categories can be eliminated, constructing essentially every possible edge bottom-up.

Performing this transformation both reduced the num- This parser is in fact almost twice as fast as the shift-

ber of edges being generated and speeded up parsing, reduce parser in terms of time per edge constructed, but

but only by about 20 percent in each case. We observed it constructs more than four times as many edges.
that the elimination of empty categories had resulted in a
grammar with many more unit production rules than the
original grammar; that is, rules of the form A - B. This Making Limited Use of Context
occurred because of the large number of cases like the Our limited success in constructing a purely bottom-
one sketched above, where an empty category matches up parser that would be efficient enough for practical
one of the categories on the right-hand side of a binary use with our unification grammar led us to reconsider
branching rule. We determined that the application of whether it is really necessary to compute every phrase
these unit production rules accounted for more than 60 that can be identified bottom-up in order to use the out-
percent of the edges constructed by the parser. put of the parser in a robust interpretation scheme. We

Our next thought, therefore, was to try to transform again focused our attention on syntactic gaps. Although
the grammar to eliminate unit productions as well, but we had dealt effectively with explicitly empty categories
this process turned out to be, in practical terms, in- and with categories generated by the unit productions
tractable. Eliminating empty categories had increased created by the elimination of empty categories, we knew
the grammar size but only by about half. When we that many of the additional edges the bottom-up parser
tried to eliminate unit productions, processing the first was creating were for larger phrases that implicitly con-
four (out of several hundred) grammar rules took a cou- tain gaps (e.g., a transitive verb phrase with a missing
pIe of hours of computation time apd generated more object noun phrase), even when there is nothing in the
than 1800 derived rules. We abandoned this approach, preceding context to license such a phrase. We reasoned
and instead we eliminated the unit productions from the that there is little benefit to identifying such phrases,
grammar by compiling them into a "link table." The the vast majority of which would be spurious anyway,
link table is basically the transitive closure of the unit because unless we can determine the semantic filler of a
productions, so it is, in effect, a specification of the unit gap, the phrase containing it is unlikely to be of any use
derivations permitted by the grammar, omitting the in- in robust interpretation.
termediate nodes. This table is then used by the parser With this rationale, we have implemented several vari-

to find a path via unit productions between the edges in ants of a bottom-up parsing algorithm that allows us to
the chart and the categories that appear in the nonunit use limited top-down constraints derived from the left-
grammar rules. This is effectively the same as the CKY context to block the formation of just the phrases that
algorithm except that edges that would be pro( uced by implicitly contain gaps not licensed by the preceding con-
unit derivations are never explicitly created. text. For example, in the sentence we previously dis-

We also made some modifications to speed up selec- cussed, "What cities does American fly to from Boston?"

tion of applicable grammar rules. We. added a "skeletal" the interrogative noun phrase "what cities" signals the

chart that keeps track of the sequences of general cat- possible presence of a noun phrase gap later in the sen-

egories (ignoring features) that occur in the chart (or tence. This licenses

could be generated using the link table), with the re- fly to
striction that the only sequences recorded are those that fly to from Boston
are initial segments of the sequence of general categories American fly to from Boston
(ignoring features) on the right-hand side of some gram- does American fly to from Boston
mar rule. Each grammar rule is itself indexed by the
sequence of general categories occuring on its right-hand all as being legitimate phrases that contain a noun
side. For example, if there is some sort of verb spanning phrase gap. Without that preceding context, we would
position x through position y in the input and some some not want to consider any of these word strings as legiti-
sort of noun phrase spanning position y through position mate phrases.
z, the skeletal chart would record that there is a sequence To implement this approach we partitioned the set
of type v.np ending at point z. Thus, when the parser of grammatical categories into context-independent and
searches for applicable rules to apply to generate new context-dependent subsets, with the context-dependent
edges in the chart at a particular position, it only con- categories being those that implicitly contain gaps.
siders rules which are indexed by an entry in the skeletal Defining which categories those are is relatively easy in
chart for that position. our grammar, because we have a uniform treatment of
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"wh" gaps, usually called "gap-threading" [51, so that can arise from matching part of a previous prediction.
every category that implicitly - explicitly contains a If we have predicted AB and we find A, then we can
gap has a feature gapsin whose value is something other predict B.
than null. We have a similar treatment of the fronting of In order to minimize the number of predictions made,
auxiliary verbs in yes/no questions, controlled by the fea- we make two important checks. First we check that the
ture vstore. Finally, an additional quirk of cur grammar prediction actually predicts some context-dependent cat-
required us to treat all relative clauses as context depen- egory. Second, we do a "follow" check, to make sure that
dent categories. So we defined the context-independent the predicted category might occur, given the next word
categories to be those that in the input stream. There are a few other minor re-

finements to limit the number of predictions, but these
"* Have null as the value of gapsin or lack the feature are the most important ones. In order to check whether

gapsin, and a context-dependent category is predicted by a certain

"• Have null as the value of vstore or lack the feature prediction, we consult a "left-corner reachability table"vstore, and that tells us whether the category we are testing is a
possible left corner of the predicted category.

"* Are not relative clauses. When we tested this algorithm, we found that it dra-
matically reduced the number of edges generated, and

All other categories are context dependent. equally dramatically improved parse time. We noted
This is, of course, simply one of any number of above that our best purely bottom-up parser was about

ways that categories could be divided between context- three times slower that the shift-reduce parser. This
independent and context-dependent. Our ability to algorithm proved to be 20 percent faster than the shift-
change these declarations gives us an interesting pa- reduce parser on our test corpus and test grammar.
rameterization of our parser, such that it can be run Examination of the number and type of edges pro-
as anything from a purely bottom-up parser, if all cat- duced by this weakly-predictive parser led us to ques-
egories are declared context-independent, to one that tion whether all the refinements that we had made to
uses maximum prediction based on left context like our the purely bottom-up parsers, in order to deal with the
shift-reduce parser, if all categories are declared context- enormous number of edges they produced, were still nec-
dependent. It would also be possible to derive a candi- essary. We have performed a number of experiments
date set of context-dependent categories automatically removing some of those refinements, with interesting re-
or semi-automatically from a corpus. The candidates for suits. The main effect we observed was that using the
context-dependent categories would be those categories link table to avoid creating edges for categories produced
that most often fail to contribute to a complete parse by unit derivations is no longer productive. By using the
when found bottom-up.1 link table to create explicit edges for those categories, so

The basic parsing algorithm remains the same as in that we do not have to use the link table at the time
the purely bottom-up parsers, with a few modifications. we match the right-hand sides of rules against the chart,
After each rule application the resulting category is we got a parser that was twice as fast as the shift re-
checked to see whether it unifies with one of the context- duce parser. We also found that leaving empty cate-
independent categories. If so, the edge for it is added to gories in the grammar actually speeded-up this version
the chart with no further checking. If not, a test is made of the parser very slightly (about 4 percent). More edges
to see whether the category is predicted by the preceding and predictions were generated for the empty categories,
left context. If so, it is added to the chart; otherwise, it but this was apparently more than compensated for by
is rejected. the reduction in the number of grammar rules.

The main complexities of the algorithm are in the gen-
eration and testing of predictions. Whenever an edge is
added to the chart, predictions are generated that are Conclusions
similar to "dotted rules" or "incomplete edges," except This paper is, in effect, a narrative of an exercise in al-
that predictions include only the remaining categories to gorithm design and software engineering. Unlike most
be matched, since predictions are not used in a reduc- algorithms papers, it contains a great deal of detail on
tion step as they are in other algorithms. So, if we have what did not work, or at least what did not work as
a rule of the form A -. BC and we add an edge for B to well as had been hoped. It is also notable because it
the chart, then we may add a prediction for C following talks about practical, rather than theoretical efficiency.
B. Whether the prediction is made or not depends on a Most papers on parsing algorithms focus on theoretical
number of things, including whether the left-hand side of worst-case time bounds. Although we have not analyzed
the rule is context-dependent or independent. In the cur- it, it seems likely that all the algorithms we tried have
rent example, if A is a context-independent category, we the same polynomial time bound, but the difference in
proceed with the prediction; otherwise, we must check the constants of proportionality involved makes all the
whether A itself is predicted. In addition, predictions difference between the algorithms being usable and not

'This idea arose in response to a question posed by Mitch usable. Also, unlike most experimental results on pars-
Marcus. ing, ours are based on a real grammar, being developed
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for a real application, not a toy grammar written only for Report AFCRL-65-758, Air Forcc Cambridge Re-
the purposes of testing parsing algorithms. It is unlikely search Laboratory, Bedford, Massachusetts (1965).
that the probiems with gaps that are absolutely crucial
in this exercise would arise in such a toy grammar. 14] D. B. Younger, "Recognition and Parsing of

In terms of concrete results, the relative performance Context-Free Languages in Time n3 ," Information
of several of the parsers is summarized in the table below. ard Control Vol. 10, No. 2, pp. 189-208 (1967).

Parser Time # Edges Time/Edge [5) L. Karttunnen, "D-PATR: A Development Envi-
shift-reduce 1.00 1.00 1.00 ronmeut for Unification-Based Grammars," Pro-
naive bottom-up 8.81 12.52 0.70 ceedings of the l1th International Conference on
best bottom-up 2.95 4.62 0.63 Computational Lirguistics, Bonn, West Germany,
best predictive 0.48 1.79 0.27 pp. 74-80 (1986).

Notice that all the new parsers are significantly faster
than the shift-reduce parser in terms time per edge gen-
erated. This is undoubtedly due to the high overhead of
the prediction mechanism used in the shift-reduce parser.
It is also interesting to note that among the new parsers,
the faster the overall speed of the parser, the faster the
time per edge, also. This may be somewhat surprising,
because of all the additional mechanisms added to the
last two parsers to reduce the number of edges, compared
to the naive bottom-up parser. Evidently the benefits of
having a smaller chart to search outweighed the costs of
the additional mechanism, even on the basis of time per
edge.

In summary, our first attempt to produce a bottom-up
parser was nine times slower than our baseline system;
our last attempt was twice as fast. Thus we achieved
a speed up of a factor of 18 over the course of these
experiments. We finished not only with a parser that
produced the additional possible phrases that we wanted
for robust interpretation, but did so mnuch faster than the
parser we started with. Furthermore, we have developed
what seems to be an important new parsing method for
grammars that allow gaps, and perhaps more generally
for grammars with a set of categories that can be divided
into those constrainted mainly internally and those with
important external constraints.
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OVERVIEW because t SLS-Ievel system integration acknowledges the
imperfect performance of the speech and natural language

This paper desc•ibes improvements to DECIPHER, the speech recog- technologies. Our natural language component is described in
nition component in SRI's Air Travel Information Systems (ATIS) and anothe paper in this volume [2]. This paper focuses on the speech
Resource Management systems. DECIPHER is a speaker-independent con- recognition system ad the evaluation of the speech recognition and
tinuous speech recogition system based on hidden Markov model AMM)r
wchnology. We show significant perfornance improvements in DECIPHER overall AT7S SLS systems.
due to 0) the addition of tid-mixture HMM modeling (2) rejection of out-
o(1vocabulary spedch and backgromnd noise while continuing to recognize
speech (3) adapting to the current speaker (4) the implementation of N-gran Resource Management Architecture
staustical grammars with DECFHER. Finatly we deatcibe our performace
in the February 1991 DARPA Resource Managemem evaluation (4.8 per- SRI has also evaluated DECIPHER using DARPA's Resource
enrt word error) and in the February 1991 DARPA-ATIS speech and SLS Management task [3,4]. The system , itectumre for this task is

evahuations (95 entences corrext, 15 wrong of 140). We show that, for the simply the speech recognition system with no NL postprocessing.
ATIS evaluation, a well-conceived system islegraUm can be relatively There ae two language models used in the evaluaion: a perplexity
rcbust to speech recognition err and go linguistic variability and rs. 60 word-pair grammar, and a perplexity 1000 all-word gramimm..

The output is simply a attempted transcription of the iuput speech.

Introduction

The DARPA ATIS Spoken Language System (SL.S) task DECIPHER
represents significant new challenge- for speech and natural This section reviews the structur of tM DECIPHER system
language technologies. For speech recognition, the SLS task is . following sevtions tescribe changes t DECIPHER.
more difficult than our previous task, DARPA Resource
Management, along several dimensions: it is rcorded in a noisier
environment, the vocabulary is not ficxd, and, most important, it is Front End Analysis
spontaneous speech, which differs significantly from mad speech.
Spontaneous speech is a significant challenge S speech DECIPHER uses an FFr-based Mel-cepstra fret end.

recognition, since it contains false stts, and non-words and Twenty-five FFT-Mel filters spanning 100 to 6400 Hz ae used to

because it tends to be more casual thn ead speech. It is also a derive 12 Mel-cepstra coefficients every 10-ms frame. Four features

major challenge to natura language technologies because the are derived every frame from this cepstra sequence. They wre

stuctu= of spontaneous language differs dramatically from the Enay-normalized Mel-epsus
structure of written language, and almost all natural language a Smoothed 40-ms time derivatives of the Mel-cepstra
research has been focused on written language. • Eegy

• Smoothed 40-ms energy differences.

SLS Architecture We use 256-word spe4ker-independent -odebooks to vector-

SRI has developed a spoken ltnguage system (SIS) for quantize the Mel-cepstra and the Mel-cepstral diffemrces. The
DARPA's ATIS benchmark task 11], This system c4m be broken up resulting four-feature-per-frame vector is used as input to the
into two distinct coaponents, th speech recognition and natnal DECIPHER HMM.based speech recognition system.
language components. DECIPHER, the speech recognition
component, accepts the speech waveform as input and produces a Pronunciation Models
word list. The word list is processed by the natural language (NL)
compooent, which generates a data base query (or no response). DECIPHER uses pronunciation models generated by applying
This simple serial integration of speech and natural language a phonological rule set to word ba.leforrs. The techniques used to
processing works well because the speech recognition system uses generate the rules are described in (6] ed [5]. These generate
a statistical language model to improve recognition performance, approximately 40 pronunciations per word as measured on the
and because the natural language processing uses a template DARPA Resource Management vocabulary and 75 per word on the
matching approach that makes it somewhat insensitive to ATIS vocabulary. Speaker-independent pmonunciation probabilities
regnition aro. SRI's SS achieves relatively high performance a then estimated using these bushy word networks and the
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forward-backward algorithm in DECIPHER. The networks are then We use two separate sets of Gaussian mixtures for out TM-
pruned so that only the likely pronunciations remain--typically HMMs; one for Mel cepstra and one for Mel-cepsuata derivauves
about 4 per wod for the resource manaement task and 2.6 per We retained our discrete distrioution models for our energy fea-
word on the ATIS task. This modelng of pronncuation is one of tMes.
the ways that DECIPHER is distinguished from other HMM-based Corrective training [5,10,11] was used to update the mixture
systems. We have shown in 16] that this modeling raduces error weighu for the TM-HMMs. The algorithm is identical to that
rat. used for discrete HMMs. Tha is. the mixture weights are

updated as if they were discrete output probabibues. No mixture

Acoustic Modeling mans or variances were corrected.

DECIPHER builds and trains word models by using context- We evaluated TM-HMMs on the RM task using the perplexity 60

dependent phone models arranged according to the pronunciation word-patir gramma. Our tr% ning corpus was the standard 3990

networks for the word being modeled. Models used include unique- sentence training set. We used the combined DARPA 1918, February

phone-in-word, phone-in-word, triphone, biphone, and ge'r'u 1989, and October 1989 test tIs for our development se.. This

biphones and triphones, as well as context-indepeDdent models, contain 900 sentences from 32 speaker. We achieved a 6.8 percent

Similar contexts are automatically smoothed together. if they do not word eror rate using our isacrete HMM system on this test setU The

adequately model the training dawa according to a deleted- ThM-HMM approach achieved an error rate of 5.5 percent. Thus, the

estimation interpolation algorithm similar to (71. The acoustic TM-HMMs improved word recognition error rate by 20 percent

models reflect both inter-word and across-word coarticulatory compared to discrete HMMs.

effects. Training proceeds as follows: Word Error

* Initially, context-independent boot models are estimated from System Type (percent)
hand-labels in the TIMIT training database. Diaciwa DECIPHER 6.8

* The boot models are used as input for a two-iteration context- i mparabo 6.3
independent model training run, where context-independent f
models ar refined and pronunciation probabilities are calcu- Tm.l omm 5.5
lated using the full word networks. These large networks are TIN-IDl&M + s aepuitka 4.9
then pruned by eliminating low probability pronunciations. TM-HMM + cofy€tve training 4.7

* Context-dependent models are then estimated from a second THMM 45C .wrrecuve 4-5

two-iteration forward-backward run, which uses the context- TABLE 1. Error rate irovements with TM-HMMs with out
independent models and the pruned networks from the previ- TA-.sentence RM developament "se
ous iterations as input.

ACOUSTIC MODELING Mate-Female Separation

IMPROVEMENTS In the June 1990 DARPA Speech wd Natural Language meeting
151, we reported a 20 percet reduction in RM word-error rate by
training separate male wad female recogaizers. decoding using

Tied Mixtures recognizes from both sexes, and then choosing the sex according to
We (TM-H Ms) the recognizer with the highest probability hypothesis. ThisWe have implemented tied-ixture HMMs (MH~)i improvement was achieved using a rncognize trained on 11,190

the DECIPHER system. Tied mixtures were first described by imroement a chieve significgnimprowed ti 11,e-

Huangf 9] yn mrreetyibyBleasan aaog. snecs. We did not achieve a significant improvement using male-uTM [9]and more recently in by Bellegxrda and Nt habiloi8]. female separation on the smaller 3990 wntence training t.l We Set
TM-HMMs use Gaussian mixtures as HMM oune ut probabilities, out to see, as has been claimed in 18], whether TM-HMMs can take
the mixsto e weights are unique to each phonetic model used, but advantage of male-female separation with smaller (3990 sentence)
the set of Gaussians is shared among the states. 'he tied Gaussians tnii let. Ou eut were mixed. Although performance did

could be viewed as forming a Gaussian-based VQ codebook that is t s Ou rent woedmixed.withocombied omode d4.
reesimaed y th HM foward-bakwad alorihm.improve frm 5.5 percent word error with combined models, to 4.9

reestimated by the HMfM forward -backward algorithm, percent word error with separate male-ferale models (a 10 percent

Our implementation of TM-HMMs has the following improvement) we note that 2/3 of the overall improvement was due to

characteristics: the dramatic improvement for speaker HXS. Aside from this one
* We used 12-dimensional diagonal-covoriance Gaussians. The speaker, the performance gain was not significant. Based on our last

variances were estimated and then smoothed with grand vari- WAdy, however, we am confident that male-female separation does

races' improve performance with suffcient training data. The table below

* Computation can be significantly reduced in TM-HMMs by shows performance for tied-mixturE HMMs using combined and sex-

pruning either the mixture weights or the Gaussians them- separated models.

selves. We found that shortfall threshold Gaussian pruning-
discarding all Gaussians whose probability density of input at
a frame is less than a constant times the best probability den-
sity for that fratme-works as well for us as standard top-N
pruning (keeping the N best Gausuians) and requires less com-
putation. A-106



Standard Models Male-Female Models This improvement with adaptation leads to performance that is
Name Errs Wds %Err Errs Wds %Err still quite short of speaker-dependent accuracy (the ultimate goal of

adaptation). Thus, it does not seem worth the added inconvenience of

ESG 2 241 0.83 4 241 1.66 obtiningt 20 known sentences from a potential system user. though it
TAB 4 178 2.25 3 178 1.69 is promisng for on-lin daptation. We plan to look into several amrs
CEW 11 241 4.56 5 241 2.07 for fuflther improvement. For exaimple:
AIC 10 253 3.95 6 253 2.37
HXS 36 222 16.22 6 222 2.70 1. Rtischev et a&. 114] have shown that adapting mixture weights is at
DMS 6 179 3.35 5 179 2.79 leaSt as important as adapting means.
GMB 3 246 11.2 7 246 2.85
HIM 11 296 3.72 9 296 3.04
BEF 5 226 2.21 7 226 3.10 2. Kubala 1151 et al. have shown that dapting speaker-dependcut
TJS 9 265 3.40 9 265 3.40 models can be superior to adapting from speaker-indepeodent
DAS 14 203 6.90 7 203 3.45 models.
JDH 12 246 4.88 9 246 3.66
EWM 12 272 4.41 to 272 3.68
KLS 8 244 3.28 9 244 3.69 3. It is possible that t adaptation setences need Dot be s~pfrvise
DTD 10 233 4.29 10 233 4.29 given the relatively good (7A percent error) initial performance.
AEO 9 229 3.93 10 229 4.37
DML 18 272 6.62 12 272 4.41
PGH 13 204 6.37 9 204 4.41 Rejection of Out-of-Vocabulary Input
ERS 11 212 5.19 10 212 4.72
GAW 15 244 6.15 12 244 4.92 We imple n a version of DECIPHER tha rejecs false input
AEM 8 302 2.65 17 302 5.63
DTB 7 227 3.08 13 227 5.73 as well as recognizing legal input (our standard recgniz=i anempts to
CTW 17 253 6.72 15 253 5.93 classify all the input). In addition to stxlard word models, it uses an
0&1 18 230 7.63 15 230 6.52
CRZ 23 302 7.62 20 302 6.62 out-of-vocabulary word model So reognize the extraneous input. The
DWA 19 270 7.04 19 270 7.04 word model has the following pronunciation network similar to [17).
OAR 19 231 123 17 231 7.36
JDM 16 271 5.90 21 271 7.735
INS 21 272 7.72 22 272 8.09
GAG 22 296 7.43 24 296 8.11 All context
IWS 16 222 7.21 21 222 9.46 independent
RKM 22 209 10.53 21 209 10.03 5pho

AVG 427 7791 5.48 384 7791 4.93

TABLE 2. Performance with and without sex-separation All context All context

There was no significant additional gain from using corrective p1

training in addition to male-female separation. Performance
imprved from 4.9 percent error (male-female only) or 4.7 percent FIGURE 1. Out-of-vocabulary word model
error (corrective training only) to 4.5 percent error (both methods).
This lack of further improvement is due to the reduction in training There an 67 phonetic models on each of ie arcs m the above
data. word network. All phonetic transition probabilities in this word

network are equal, and ae scaled by a parameter that adjusts the
Speaker Adaptation amount of false rejection vs. false acetance.

We have begun experiments into speaker-adaptation, Thus far, we have performed a pilot study that shows this method
converting speaker-independent models into speaker-dependent to be promising. We gathered a database of 58 scetences total from six
ones. Our experiment involved using VQ codebook adaptation via people. About half of the enatnces w'e digit strings and the other half
tied-mixture HMMs as proposed by Richev [13]. That is, we m'e digits mixed with otler things. There w atotal of426 digits in the
adjusted VQ codeword locations based on forward-backward database, and 176 additional noD-igit words. Example sntences are
alignments of adaptation sentences. However, since we we using a outlined in Table 3.
ied-mixture recognition system, we adapted the Gaussian means
instead of the codebook. We considered correct recognition for these sentences to be the

digits in the suting without the rest of the words (i.e. 2138767287,
We selected 21 of the speakers in our development test set for 3876541104, 33589170429 we the correct amswers for the top three

use in an adaptatior experiment. We had either 25 at 30 Resource entence. in Table 3).
Management sentences recorded for each of thse speakers. We
chose to use their first 20 sentences for adaptation, and the other 5 We trained a digit recognizer with mjection from the Resource

or 10 sentences for adaptation testing. Management traning set and haheved a word arr raft of 5.3 percent
for the 27 sentences that contained only digits (13 erros - I insert 3

Using our original TM-HMM models, we achieved an error delete 9 subs in 243 reference words), which is within one errorofthe
rate of 7A percent (114 erors in 1541 reference words) on this system without rejection. Thus, in this pilot study. using rejection
adaptation test set. After adjusting means for each speaker using the didn't hurt performance for "clean" input. The overall error rate was
20 adaptation sentences, we achieved an error rate of 6.1 percent 11.7 percent (26 inserts 15 deletes 9 subs in 426 reference words).
(94 errors in 1541 reference words) an the adaptation test That is, 402 of 426 digits were detected, and at least 141 of the 176

sentences, extraneous words were rejected.
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We also explored various class-grammar implementations. These

myparents nugber is 213 um 8 76 ok 72 8 7 grammars were generated by interpolating word-based bigrams with

ifyou haw questions please diald extion 3876 at 54 11 oh 4 lass-bmsed bigsms. We were able to vary the grammars and their

please call 335 891 am 7 oh 42 9 perplexities by varying the interpolation coefficients. However,

mra's Id's see wha'rs this 12 3 4 5 sA Mhat's Pm right 2 3 4 5 recogniton perfornance nevtr isproved over that for the back-off

12 3oh no that's wrong 2 4 589 yeahi.hink that's it b m In fact, accuracy remained relaively cntant throughout a

this isatest 123458 7shiswaionly kats large range of perplexities.

<Vrw*t> 12 <cough> 34 5 <sneze> 8 7 <mic-xoise> Table 5 illustrates recognition accuracy using bigrams with

4) dollars and 318 cents different perplexities on our ATIS developmen test set. A prliminary
what'sthisoh4 108 set of models was used for recognition (with 442 words in the

well let's ee 314 78 ak vocabulary) and the grammar% were estimated using 2,909 sentences.

TABLE 3. Sample sentences for the rejection study Word Error
Perpledity (percent)

Backed-off Bagrmi 19 14.1

LANGUAGE MODELING bwMd&-a ia,,, 2D 14.5
24 15.3
71 14.9

Bigram Language Modeling 19 14.7
91 14.5

We used a bigrain language model to constrain the speech 113 14.9"42 29.2
recognition system for the ATIS evaluation. A back-off estimation
algorithm [16] was used for estimation of the bigram parameters.
The training data for the grammar consisted of 5,050 sentences of TABLE 5. Perplexity vs. word error on the ATIS
spontaneous speech from various sites-1,606 from MIT's ATIS development set
data collection project, 774 from NIST CD-ROM releases, 538
hor SR, J's ATIS data collection project, and 2,132 from various These tables also illustrate that recognition performance did not
other sites. depend strongly on the test-set perplexity. Clearly, other factors are

Robust estimates for many of the bigram probabilities cannot dominating performance. We believe that one of our most pressing
be achieved since the vast majority of them ar seen very meed s this research is to understmd what this botleneck is, and to
infrequently (because of the lack of sufficient training data). develop ways that express it better than perplexity.
Furthermore, frequencies of words such as months and cities were
biased by the data collection scenarios aid the time of year the data Multi-Word Lexical Units
was collected. To reduce these effects, words with effectively
similar usage were assigned to groups, and instead of collecting Many words occur with sufficient frequwcy and with significant
counts for the individual words, counts were collected for the cross-word coarficulation that a better acoustic model aight be made
groups. After estimation of the bigram probabilities, the by training these word combinations as a single word model. These
probabilities of transitioning to individual words were assigned the words include "what-are-the," "give-me," etc., which can have a
group probability divided by the number of words in the group. variety of pronunciations best modeled with a network of phones
This scheme not only reduced some of the problems due to the representing the phonetic and phonological variation of the whole
sparse training data, but also allowed some unseen words (other sequence ("what'm-the," "gimme," etc.) instead of ach word
city names, restriction codes, etc.) to be easily added to the separately.
grammar. The table below contains the groups of words tied A, w consideng class grammari, multiple word
together. sequences allow classes which could not be coostructed by
months, days, digits, teems. decades, daeofinals, cities, airporu, considering every word separately. For instance. having distinct
states, dayrlins, diais-codesu. de icadedte onlfal. ciies, airporne- ~ models of all the rtriction codes (e.g. "v-u-slash-one") maight be
s otes. arnes, class-codes, aieton-codes,far.e-codesa more appropriate than modeling alpha->alphma->slash- >number in

aides. , Oft-coder ,L a C.OdU, O C-dC the bigram. The latter form would allow all the alphabet letes to

transition to all the alphabet letters, with probabilities as prescribed by
TABLE 4. Ted Groups the bigraizn and would incorectly irmase the probability for invalid

restriction codes.

Using our back-off bigram on our ATIS development set (most This multi-word te ique allows all the probabilities of all the
of the June 1990 DARPA-ATIS test set), we achieved a 14.1 restriction codestobetied togethet so that all ar equally covered at
percent word error rate with a test-set perplexity of 19 (not counting the appropriate place in the gramar, instead of depending completely
6 words not covered by the grammar). When we applied this cc the invidual words' statistics estimated from sparse training data
grammar to the February 1991 ATIS evaluation test set (200 The mul-wod approach rsulted in only a slight performac
sentences) the perplexity was 43, excluding 26 instances of words pvement omparoa syste w non -coartichtorm utnot covered in our voc.abulary. Fat the 149 Class A sentences, the improveenict compared to a system whenm noti-coarticulatomy multi-

gniotoveredin word vocratlar 7.8 rcenth 4Ca Asntcwords wer left separated. That is, for the "separate words" system,
recognition wor error rate was 17.8 percen. words like "a p slash eighty" were separate words, but coarbculaLory
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word models like "what- a-the" and "iU-IWhe" were rtained. On a a Corective training on mixture weights
I19-aentenc= subset of the June 90 evaluation aet, the nw tls w*a Resource Management all-word and word-pair pramma used
as shown in Table 6. with 992-word Resource Management vocabulary.

Development Set Performance We achieved the performanc shown in Table 9.

Perplexity Word Error Speaker P=60 P=1000
(percent) ALK03 9.7 20.1

Multi-• rd 26 9A6 CALl5 2.5 11.9
sezm woWan 20 10.7 CAUo7 2.6 14.7

EACM2 10.2 22.0
February 1991 Class-A Evaluation Performance 0 i7 11.1JWG05 7.5 19.5

Word Error KEBO3 2.9 17.6
Perplexity (percent) SAS05 2.2 10.4SIX01 4.1 21.2

Multi-Word 43 17.8 STROI 5.2 27.2
Separate Words 34 13.3 Avere 45.1 17.

TABLE 6. Effectiveness of multi-word modeling TABLE 9. DARPA-RM February 1991 speaker-independent

evaluation
Not that the higher perplexity of the multi-word system is

deceiving since high probability grammar transitions are now Our performnce is severely limited by training 4atW5], and
hidden within the multi-word models, and ae not seen by O many further improvements for the RM task may only be ways to
grammar. Tables 7 and 8 list the various multi-word units. work aound RM's tificial limit on training data. Thus, we expect to

develop and evaluate our system in the future with the ATIS task
1/~hts-fio what-is-tw, A awe.m.the, show-me-all. show-me, which both has more training data available and uses momr realistic

how-mawy, one-way, what-ae-the, give-wv, what-is. i-wowd-like, (spontaneous) speech.
i4d-Like4o, what-does

SLS Evaluatlom
TABLE 7. Coaliculatory Mufti-Words

We evaluated on DARPA's Februay 1991 ATIS test set using a

CITIES: ,n-fnmcimco. washington-d-c ... system similar to the one described above except:
AIRLINES: a-1, "-c, t-w-a, u-s-ai4...
AIRCRAFT: d-c-len, aeven-forty-sven, ... * The system was rained on 17,042 sentences (3990 RM-SI. 4200
AIRPORTS: a--, b-o-s. s-f-c, d-f-w.... TIMIT, 7932 read ATIS, 920 spontaneous ATIS).
CLASS CODES: q-x, f-y-b-m-q, k-y, y-fn....
RESTRICT CODES: a-p-eiglty, a-p-slasi-eighty,... • 1,139 word vocabulary (the test set vocabulary was not reveale
COLUMN HEADS: d-u-r-a, e-T-p, rN-a-max. _ in advam) using multi-word units.

* Discrete distribution HMM modeling was used for all features.
TABLE 8. Semantic Multi-Words * A back-off bigram language model 116] with tied word-proups

was used, with a test set perplexity of 43 (not counting 26 words
out of vocabulary).

• A template-marcher natural language component 121 was used ID

EVALUATION genea• ATIS database qumies based on the speech reoguition
output.

RM Evaluation We achieved the performsn shown in Table 10.

SRI evaluated the DECIPHER system on DARPA's February SPKR Coar Sub Del Ins Err Sent Err
1991 speaker-independent test Set. The characteristics of the
evaluated system wer: CL 93.6 5.1 1.3 1.7 3.1 42.3

Cl 92.0 6.9 1.0 0.7 8.7 46.2
CO 92.0 3.7 4.3 1.2 9.3 56.2~Speak-nnh cpen recognition C? 90.7 7.5 1.8 2-S 11.8 59.3

3990 sentence DARPA-RM training CK 33.3 3.8 7.8 1.0 17.6 58.3

3 sum, lefi-to-righ. coutext-dependent hidden Markov model CH 81.2 5.3 1035 5.3 21.1 100.0
CE 31.5 12.0 6.5 3.2 21.8 70.0

using deleted-interpolation estimation of prameten Ca 73.1 2,.0 2.9 S.9 32.7 90.0
* Input features were 12 Mel-cepstra and delta-Mel-cepstra and CM1 75.0 23-5 1.5 263 5135 100.0

scalar quantized energy mid delta-enqy Averae 363 103 3A 43 17.8 0.1
* Tied-mixture modeling for Mel cepstra and delta-Mel-cepstra A-lword (Perplexity 1139)
* 256 diagonal covariance Gaunians for each AvW"SP $3. 233 3.7 &9 35.5 912

* Independent discrete density HMM models for enewgy and
delta enery TABLE 10. DARPA-ATIS February 1991 speech evaluation

* Multiple pronunciation trained phonological modeling, about 148 Class A Sentences
4 pronunciations per word on average

* Cross-word acoustic and phonological modeling
* Sex-cosistent modeling A-109
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L ABSTRACT ways; it includes speaker-dependent vs. speaker indepen-
dent sections and sentences where the users were asked to

SRI has ported its DECIPHERI. speech recognition system from verbalize the punctuation (VP) vs. those where they were
DARPA s ATIS domain to DARPKs CSR domain (read and spon- asked not to verbalize the punctuation (NVP). There are
taneous Wall Street Journal speech). This paper describes what also a small number of recordings of spontaneous speech
needed to be done to port DECIPHERTM. and rpos eperiments that can be used in development sod evaluation.
peformed with the CSR tsk. The corpus and associated development and evaluation

The sytemn was evaluated on the spaskerindepenmzde (SM) portion materials were designed so that speech recognition systems

of DARPAs February 1992 -Dry-Run" WSJO tan and achieved may be evaluated in an open-vocabulary mode (none of the

17.1% word error without verbalized punctuation (NVP) and words used in evaluation are known in advance by the
16.6% error with verbalized punctuaion (VP). In addition, we speech recognition system) or in a closed vocabulary mode
increased the amount of training data and reduced the VP er (all the words in the test sets are given in advance). There
faoe to 12.9%. This S1 error rate (with a larger amount of training are suggested 5,000-word and 20,000-word open- and
data) equalled the best 600-training-sentenas speaker-dependem closed-vocabulary language models that may be used for
error rate reported for the February CSR evaluation. Finallf the developmen and evaluation. This paper discusses a pre-
system was evaluated on the VP dt using microphone unknown liminary evaluation of SRI's DECU-ERTM system using
to the system instead of the tnin&s-c w microphot read speech from the 5000-word closed-vocabulary tasks
and the error rate only increased to 26.0%. with verbalized and nonverbalized punctuaon.

2. DECIPHER 4. PORTING DECIPHER"
TO THE CSR TASK

The SRI has developed the DECIPHERM, system, an
HMM-based speaker-independent. continuous-speech rec- Several types of data are needed to port DECIPHERlu to a
ognition system. Several of DECIPHERm's attributes are new domain:
discussed in the references (Butzberger et aL, (1]; Murveit
et al., [2]). Until recently. DECIPHERM's application has • A target vocalary list
been limited to DARPA's resource management task (Pal- • A target language model
let, [3]; Price et al., [4]), DARPA's ATIS task (Price, [5]),
the Texas Instruments continuous-digit recognition task - Task-specific training data (optional)
(Leonard, [6]), and other small vocabulary recognition
tasks. This paper describes the application of DECIPH-ERN" Pronunciations for all the words in the target vocab-
to the task of recognizing words from a large-vocabulary ulary (mandatory) and for all the words in the tram-
corpus composed of primarily read-speech. ing data (optional)

• A backend which converts recognition output to
3. THE CSR TASK actions in the domain (not applicable to the CSR

task).
Doddington [7] gives a detailed description of DARPA's
CSR task and corpus. Briefly, the CSR corpus* is composed
of recordings of speakers reading passages from the Wall *Th mrint CSR corpus, designmed WS1O is a pilot
Street Journal newspaper. The corpus is divided in many for a lare corpus to be collected in the fture.
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4.1. CSR Vocabulary Lists and Language 5.2. Results for a Simplified System
Models

Our strategy was to implement a system as quickly as possi-
Doug Paul at Lincoln Laboratories provided us with base- ble. Thus we initially implemented a system using four vec-
line vocabularies and language models for use in the Febru- tor-quantized speech features with no cross-word acoustic
ary 1992 CSR evaluation. This included vocabularies for modeling. Performance of the system on our development
the closed vocabulary 5,000 and 20,000-word tasks as well set is described in the tables below.
as backed-off bigram language models for these tasks.
Since we used backed-off bigrams for our ATIS system, it
was straightforward to use the Lincoln language models as Table 1: Simple Recognizer
part of the DECIPHERII-CSR system.

Verbalized Non
4.2. CSR Pronunciations VerbalizedSpeaker Punctuation pucato
SRI maintains a list of words and pronunciations that have %word err P rcterr
associated probabilities automatically estimated (Cohen et %word err
al.. [8]). However, a significant number of words in the
speaker-independent CSR training, development, and 050 10.0 11.8
(closed vocabulary) test data were outside this list. Because
of the tight schedule for the CSR evaluation, SRI looked to 053 14.0 17.6
Dragon Systems which generously provided SRI and other
DARPA contractors with limited use of a pronunciation 420 14.7 18.1
table for all the words in the CSR task. SRI combined its
internal lexicon with portions of the Dragon pronunciation 421 11.9 17.9
list to generate a pronunciation table for the DECIPHER...
CSR system. 051 21.1 18.8

052 20.7 20.2
4.3. CSR Training Data 22g 75.4 19.6
The National Institute of Standards and Technology pro-
vided to SRI several CDROMS containing training, devel- 22h 20.8 13.0
opment, and evaluation data for the February 1992 DARPA
CSR evaluation. The data were recorded at SRI, MIT, and 422 57.9 40.4
TI. The baseline training conditions for the speaker-inde-
pendent CSR task include 7240 sentences from 84 speak- 423 15.0 24.6
ers, 3,586 senteices from 42 men and 3,654 sentences from
42 women. Average 20.1 20.2

5. PRELIMINARY CSR PERFORMANCE The female speakers are those above the bold line in Table
1. Recognition speed on a Sun Sparcstation-2 was approxi-
mately 40 times slower than real time (over 4 minutes/sen-

5.1. Development Data tence) using a beam search and no fast match (our standard
smaller-vocabulary algorithm), although it was dorminated

We have partitioned the speaker-independent CSR develop- by paging time.
ment data into four portions for the purpose of this study. A brief analysis of Speaker 422 shows that he speaks much
Each set contains 100 sentences. The respective sets are faster than the other speakers which may contribute to the
male and female speakers using verbalized and nonverbal- high error rate for his speech.
ized punctuation. There are 6 male speakers and 4 female
speakers in the SI WSJO development data.

5.3. Full DECIPHER"-CSR PerformanceThe next section shows word recognition performance on
this development set using 5.000-word, closed-vocabulary
language models with verbalized and nonverbalized bigram We then tested a larger DECIPHERe system on our VP
grammars. The perplexity of the verbalized punctuation development set. That is. the previous system was extended
sentences in the development set is 90. to model some cross-word acoustics, increased from four to
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six spectral features (second derivatives of cepstra and
energy were added) and a tied-mixture hidden Markov
model (HMM) replaced the vector-quannzed HMM above.
This resulted in a modest improvement as shown in the 6. DRY-RUN EVALUATION
Table 2.

Subsequent to the system development, above, we evalu-
ated the "full recognizer" system on the February 1991 Dry-

Table 2: Full Recognizer Run evaluauon materials for speaker-independent systems.
We achieved word error rates of 17.1% without VP and
16.6% error rates with VP as measured by NIST.'Verbalized

Speaker Punctuation
%word err Table 3: Dry-Run Evaluation Results

050 11.1
Non

053 11.7 Verbalized Verbalized
420Speaker Punctuation Punctuation

_ ..... %word err %word err
421 11.0

427 9.4 9.0
051 20.0

425 20.1 15.1052 14.2 ...
zOO 14.4 16.7

22g 15.7 063 24.5 17.8

22h 14.9
426 10.2 10.8

422 48.3
S13.0 060 17.0 22.9423 13.0

061 12.3 13.6
Average 17.4 22k 25.3 17.6

221 17.8 12.4

424 20.0 18.4

Average 17.1 15.4

7. OTHER MICROPHONE RESULTS

The WSJO corpus was collected using two microphones
simultaneously recording the talker. One was a Sennheiser
HMD-410 and the other was chosen randomly for each
speaker from among a large group of microphones. Such

*Tre NIST error rates diffa slightly (insignificantly)
from our own measures (17.1% and 16.6%), however, to
be consistent with the other error rates reported in this
paper. we are using our internally measured error rates
in the tables.
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dual recordings are available for the training, development. 8. EXTRA TRAINING DATA
and evaluation materials.

We chose to evaluate our full system on the "other-micro- We suspected that the set of training data specified as the
phone" data without using other-microphone training data. baseline for the February 1992 Dry Run Evaluation was
The error rate increased only 62.3% when evaluating with insufficient to adequately estimate the parameters of the
other-microphone recordings vs. the Sennheiser recordings. DECIPHERTM system. The baseline Si training condition

contains approximately 7,240 from 84 speakers (half42
In these tests, we configured our system exactly as for the male, 42 female).
standard microphone evaluation, except that we used SRI's
noise-robust front end (Erell and Weintraub, (9,101; Mur- train the system to see if performance could be improvedFveit. et al., 1111) as the signal processing component,.rm tes se osei ef r ac ol ei p o e

with extra data. However, to save time, we used only speech
Table 4 summarizes the "other-microphone" evaluation from male speakers to train and test the system. Thus, the
results. Speaker 424's performance, where the error rate training data for the male system was increased from 3586
increases 208.2% (from 18.4% to 56.7%) when using a sentences (42 male speakers) to 9109 sentences (53 male
Shure SM91 microphone is a problem for our system. How- speakers).* The extra training data reduced the error rate by
ever, the microphone is not the sole source of the problem, approximately 20% as shown in Table 5.
since the performance of Speaker 427, with the same
microphone, is only degraded 18.9% (from 9.0 to 10.7%).
We suspect that the problem is due to a loud buzz in the
recordings that is absent from the recordings of other speak- whe number of speakers did not increase substantially
ers. since the bulk of the extra training data was taken from

the speskae-dependent portion of the corpus.

Table 4: Verbalized Punctuation Evaluation Results Using "Other Microphones"

%word error %word error
Speaker Microphone "other nic" Sennheiser mic %degradation

427 Shure SM91 desktop 10.7 9.0 18.9

425 Radio Shack Highball 21.4 15.1 41.8

zOO Crown PCC 160 desktop 24.9 16.7 49.1

063 Crown PCC160 desktop 29.4 17.8 65.2

426 AATT720 telephone 10.8 12.0over local phone lines 12.1

060 Crown PZM desktop 30.5 22.9 33.2

061 Sony ECM-50PS lavaliere 18.8 13.6 38.2

22k Sony ECM-55 lavaliere 25.3 17.6 43.8

221 Crown PCC160 desktop 22.8 12.4 83.9

424 Shure SM91 desktop 56.7 18.4 208.2

Average 25.0 15.4 62.3
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authors and do not necessarily reflect the views of the gov-
emnment funding agencies.

Table 5: Evaluation Male Speakers We would like to that Doug Paul at Lincoln Laboratones for
with Extra Training Data providing us with the Bigram language models used in this

study, and Dragon Systems for providing us with the

Speaker Baseline Larger-Set Dragon pronunciations described above. We would also like

Training Training to thank the many people at various DARPA sites involved
._ _ _in specifying, collecting, and transcribing the speech corpus

060 22.6 15.5 used to train, develop, and evaluate the system described.

061 13.6 8.2 REFERENCES
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1. ABSTRACT data. If the input acoustical signal is not segmented by sen-
tence (e.g. open microphone with no push-to-talk button)

Speech recognition systems tend to be sensitive to unimportant and there are long periods of silence, the above approaches
steady-state variation in speech spectra (i.e. those caused by vay- would not be able to operate without some type of reliable
ing the microphone or channel characteristics). There have been automatic speech-input/sentence-detection mechanism. An
many attempts to solve this problem- however, these techniques automatic sentence-detection mechanism would have con-
are often computationally burdensome, especiaUy for real-time siderable difficulty in reliably computing the average
implementation. Recently, Hermansy at al. [1] and Hirsch et al. [2] speech spectrum if there were many other nonspeech
have suggested a simple technique that removes slow-moving lin- sounds in the environment.
ear channel variation with little adverse effect on speech recogni- A second class of techniques developed around auditory
tion performance. In this paper we examine this technique, known models (Lyon [11]; Cohen [12]; Seneff [131; Ghitza (141).
as RASTA filtering, and evaluate its performance when applied to These techniques use various automatic gain control and
SRI's DECIPHERTM speech recognition system (3]. We show that other auditory-type modeling techniques to output a spec-
RASTA filtering succeeds in reducing DECIPHERm's depen- tral vector that has been adapted based on the acoustic his-
dence on the channel. tory. A potential limitation of this approach is that many of

these techniques are very computationally intensive.

2. INTRODUCTION
3. THE RASTA FILTER

A number of techniques have been developed to compen-
sate for the effects that varying microphone and channels RASTA filtering is a high-pass filter applied to a log-spec-
have on the acoustic signal. Erell and Weintraub [4,51 have tral representation of speech. It removes slow-moving van-
used additive corrections in the filter-bank log energy or ations from the log spectrum. The filtenng is done on the
cepstral domains based on equalizing the long-term average log-spectral representation so that multiplicative distortions
of the observed filter-bank log energy or cepstral vector to (such as a linear filter) become additive and may be
that of the training data. The techniques developed by Rose removed with the RASTA filter. A simple RASTA filter
and Paul (6) and Acero [7] used an iterative technique for may be implemented as follows:
estimating the cepstral bias vector that will maximize the
likelihood of the input utterance. Nadas et al. [8] used an
adaptive linear transformation applied to the input repre-
sentation. where the adaptation uses the VQ distortion vec-
tor with respect to a predefined cdebook. VanCompemolle y(t) x() - x (t - i ) + ( C -y (t- 1))
(10] scaled the filter-bank log energies to a specified range
using running histograms, and Rohlicek (9] experimented
with a number of histogram-based compensation metrics
based on equalizing different aspects of the probability dis-
tnbution. where x(t). as implemented in DECIPHERTM, is a log band-

pass energy which is normally used in DECIPHERm to
One important limitation of the above approaches is that compute the Mel-cepstral feature vector. Instead. x(t) is
they rely on a speech/nonspeech detector, Each of the replaced by y(t), the high-pass version of x(t). when per-
above approaches computes spectral properties of the input forming the cepstral transform.
speech sentence and subsequently compensates for the sta-
tistical differences with certain properties of the training The constant, C, in the above equation defines the time

constant of the RASTA filter. It is desirable that C be such
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that short-term variations in the log spectra (presumably
important parts of the speech signal) are passed by the filter,
but slower variations are blocked. We set C = 0.97 so that dB
signals that vary faster than about 1 Hz are passed and those -4000.-.'.
that vary less than once per second tend to be blocked. Fig-
ure I below plots the characteristic of this filter.

-5C 0 .0 0 -........ ........... ...

dB 0.00 2.00-4 .0 -. .............. .......... .. ...................... .... -. .... ........... .. .. .... ... ........ . .... . .. 1 o
-40.00 .. .........................- Hz x 1000

Figure 2: The distorting bandpass filter characteristic.

- .A ...................................................................... 4. .........
Original B andpass
Speech Speech

-0. 0.... .................................... ... .... ............... ......... .........- ........... a e f m l a e f m l
8 0.00....... . .. . male female male female

Standard 3.2 3.1 }13.9 11.60.00 20.00 40.00

Hz RASTA 3.4 2.1 3.0 1.9

Figure 1: Characteristics of the C = 0.97 RASTA filter iTable h: Word error rates for standard signal process-

When used in conjunction with SRI's spectral estimation ing techniques and RASTA filtering techniques using clean
algorithms [4, 5], the high-pass filter is applied to the filter- and bandpass-filtered telephone speech.
bank log energies after the spectral estimation operation.
The estimates of clean filter-bank energies are highpass fil-
tered and then transformed to obtain the cepstral vector. 4. REDUCED MICROPHONE
The cepstral vector is then differenced twice to obtain the DEPENDENCE
delta-cepstral vector and the delta-delta-cepstral vector.

After the encouraging initial study, we tested RASTA filter-
3.1. Removal of an Ideal Linear Filter ing in a more realistic manner-measuring the performance

improvement, due to RASTA filtenng, when dissimilar
We first evaluated RASTA filtering by applying a bandpass microphones are used in the test and training data.
filter (Figure 2 below) to a speech recognition task-contin- To do this, we recorded 50 sentences (352 words) from one
uous digit recognition performance over telephone lines. * dk t aneously usint en t microphone
The filter was applied to the test set only (no filtering was talker simultaneously using two different microphones. a
applied to the training data). We compared the resulting Sennheiser flat-response close-talking microphone that was
performance with the performance of an unfiltered test set used to tran the system. and an Electrovoice 625 handset
for both standard and RASTA filtering. As Table 1 shows, with a very different frequency characteristic. The user
the RASTA filtering was successful in removing the effects spoke queries for DARPA's ATIS air-travel planning task.
of the bandpass filter, whereas the standard system suffered Table 2 shows that for this speaker, the error rate was less
a significant performance degradation due to the bandpass sensitive to the difference in microphone when RASTA ill-
filter. Compared with our standard signal processing, the tering was applied than when it wasn't. Further, there is no
RASTA filtering was able to give a slight improvement on evidence from this and the previous study to indicate that
the female digit error rate, with no significant change in the RASTA filtering degrades performance when the micro-
male digit error rate. The dramatic decrease in performance phone remains constant.
that occurs when the telephone speech is bandpass filtered
is removed by the RASTA filtering, and the results are com-
parable to the original speech signal.
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model, One example is testing with a desktop microphone
with models crained with a cto,,- wking microphone. In this
scenano. although the microphones charactenstics may be

Sennheiser Electro Voice approximately related with a linear filter, additive noise
picked up by the desktop microphone violates the linear-fi-

Standard 13 (3.7%) 31(8.8%) ter assumption.

RASTA 12 (3.4%) 17 (4.8%) To see how important these effects are, we performed rec-
ognition experiment on systems trained with sennheiser
microphones and tested with a Crown desktop microphone.

Table 2: Number and percentage of word errors for a These test recordings were made at Carnegie Mellon Uni-
single speaker when test microphone and signal processing versity (CMU) and at the Massachusetts institute of Tech-
were vaned. nology (MIT). They simultaneously recorded a speaker

using both Sennheiser and Crown microphones interacting
with an ATIS (air travel planning) system.

5. DESKTOP MICROPHONES The performance of DECIPHERTM on the ATIS recordings

is shown in Tables 3 and 4. Table 3 shows the system per-
RASTA filtering is most effective when differences formance results on MIT's recordings, while Table 4 con-
between training and testing conditions can be modeled as tains the sys:em performance results on CMU's recordings.
linear filters. However, many distortions do not fit this

Speaker Sennheiser Crown Crown Crown Crown

Standard Standard RASTA NRFE NRFE+RASTA

4V 13.0 13.8 22.8 18.7 16.3

4W 1.7 5.1 1.7 4.3 3.4

5E 17.8 26.6 27.8 18.1 14.7

55 18.5 26.6 25.3 23.2 17.6

59 13.7 40.2 41.0 26.6 23.6

Average 12.9 22.5 23.7 18.2 15.1

Table 3: Word error rate for MIT recordings varying microphone and signal processing

Speaker Sennheiser Crown Crown Crown Crown

Standard Standard RASTA NRFE NRFE+RASTA

IF 20.7 91.8 46.9 46.9 36.7

IH 20.5 93.2 75.7 71.0 35.8

IK 26.2 87.1 62.3 60.3 35.8

Average 22.5 90.7 61.6 59.4 36.1

Table 4: Word error rate for CMU recordings varying microphone and signal processing
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For the MIT recordings, note that the best performing sys-
tem on the Crown microphone data was very close with the
performance on the Sennheiser recordings (12.9% vs.
15.1%). The addition of RASTA processing did not help the (Ci (MicI) -Ci(Mic 2))
standard processing on the Crown data (the error rate went Relative Distortion (Ci) =-
up slightly i'rm 22.5% to 23.7%) but it did help the noise- (c, ) ,M',,)
robusz estimat, n processing (18.2% to 15.1%).

The performance on CMU's Crown recordings were much
lower. CMU's audio recordings for were noticeably noisier; The relative distortion for cepstral coefficient Ci is corn-
the speaker sounded as if he was much farther from the
microphone. and there were other nonstationary sounds in puted by comparing the cepstral value of the first micro-
the background. Note that the error rate with the standard phone with the same cepstral value computed on the
signal processing is extremely high (90.7% word error). For secondaor microphone the Tarage squared difference isthe CMU Crown microphone recordings, the addition of then normalized by the variance of this cepstral feature on

the MU rownmicophoe rcorings th addtio of the two microphones. This metric gives an indication ofRASTA processing helped reduce the error rate for both the how muchriance theis meto gthe an differ-
standard and noise-robust estimation processing conditions. how much variance there is due to the microphone differ-
The NRFE + RASTA processing was able to reduce thedue toThe RFE RATA pocesingwas ble o rducethe phonetic variation. This metric i;plotted a-s a function of the
errnr rate by 60% over the no-processing condition on the
CMU Crown microphone recordings (90.7% to 36. 1%). cepstral coefficient for different signal processing algo-

rithms in figure 3.
SRI's noise-robust spectral estimation algorithms are Figure 3 shows that the PASTA processing helps reduce the
designed to estimate the filter-bank log energies of the clean distortion in the lower order cepstral coefficients. When
speech signal when there is additive colored noise. The esti- combined with SRI's noise-robust spectral estimation algo-
mation algorithms were designed to work independently rithms, the distorion decreases even further for the lower
from any spectral shape introduced by the microphone and ritms tedstrtioecrease evther foritheslower
channel variations. Therefore, some type of additional spec- ordtr cepstral coefficients. Neither of the algorithms helptralnoraliatin i remird t copenateforthese reduce the distortion for the higher cepstral coefficients.
tral normalization is recmired to compensate for This metric indicates that even though the robust signal pro-
effects: the combined "NRFE + RASTA" system serves cessing has reduced the recognition error rate due to micro-
that purpose. The RASTA system (without estimation) can .h
help compensate for me linear microphone effects, but it phone differences, there is still consideraz. . variation in the
can help only to a limited degree with the nonlinearities cepstral representation when the microphone is changed.

introduced by other sounds.

7. SUMMARY
6. ROBUSTNESS OF REPRESENTATION

TO MICROPHONE VARIATION We have shown that high-pass filtering of the filter-bank log
energies can be an effective means of reducing the effects of
some microphone and channel variations. We have shown

To understand the benefit that we have obtained using the that such filtering can be used in conjunction with our previ-
different processing techniques. we developed a metric for ois estimation techniques to deal with both noise and
the robustness of the representation that is separate from microphone effects. The high-pass filtering operation is a
speech-recognition performance. The DARPA CSR corpus simple technique that is computationally efficient and has
(Doddington [151) was used for this evaluation since it is been incorporated into our real-time demonstration system.
contains stereo recordings. By using stereo recordings, we
r~n compare the robustness in the representation that occurs
when the microphone is changed. In this CSR corpus, the
first channel of these stereo recordings is always a Sen- REFERENCES
nheiser close-talking microphone. The second recordingchannel uses one of 15 different secondary microphones. 1. H. Hermansky. N. Morgan. A. Bayy!a. P. Kohn. 'Compen-

sation for the Effects of the Corrmurmcation Channel in
Using this stereo database, we can compute the cepstral fea- Auditory-Like Analysis of Speech," Eurospeech. Sept.
ture vector on each microphone channel, and compare the 1991, pp. 1367-1370.
two representations to determine the level of invariance
provided by the signal-processing/representation. The met- 2. cH.tHirscnd H.W. Fueri. ofmproved Spec
ric that we used for determining the robusmess of the repre- Recognition using High-Pass Filtering of Subband Enve-
sentation is called relative-distortion and is computed in the lopes." Eurspeech, Sept. 1991t pp. 413416
following equation. 3. H. Murveit. J. Butzbe-',er, and M. Weintraub. "Speech

Recognition in SRI's Resource Management and ATIS
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Integrating Natural Language Constraints
into HMVM-based Speech Recognition

Hy Murveit and Robert Moore
SRI International, Menlo Park, CA

ABSTRACT no NL constraints and the NLP system just parses one
sentence. The disadvantage is that little interaction

This paper discusses a new approach to implement- between the SR and NLP is possible, i.e. the n-tural

ing spoken language systems. This approach both takes langiage processor cannot correct errors that the speech

full advantage of syntactic and semantic constraints pro- recognizer makes.
vided by a natural language processing component in the
speech understanding task and provides a tractable search WORD LATTICE INTERFACE:
space. The results show hat the approach is a promising
one for large vocabulary systems. We have already The SR system produces a graph representing the

achieved, for high perplexity syntactic grammars, parse recognition scores associated with recognizing all (many)
times within a factor of 20 of real time with resulting of the words in the vocabulary starting from all (many)

HMM recognition computational requirements within the possible start times and ending at all (many) possible end

capability of high specd multiprocessor computers or spe- times. The NLP system searches this graph for the best

cial purpose speech recognition hardware. scoring sentence that meets NL constraintslI].

The advantage of this approach over the first ap-
INTRODUCTION proach is that it allows interaction between SR and NLP

thus improving recognition (and possibly) NLP perfor-
This paper discusses a new approach to implement- mance. Disadvantages include a considerably higher com-

ing spoken language systems-systems that integrate putational burden on the system. The SR system must
speech recognition (SR) and natural language processing now create a lattice for many word start anl end times,

(NLP) capabilitim. This approach both takes full advan- and thus may not be able to take advantage of fast
tage of syntactic and semantic constraints provided by dynamic programming based search algorithms appropri-
the N-LP and provides a tractable search space for the ate for schemes solving for the best answer only. In the
overall understanding task. worst case, computation increases by the length of the in-

put sentence (the number of possible start points for every
We aini to integrate speech recognition and NLP because: word). Realistically, exhaustive lattices are impractical,

and the lattice pruning algorithms that must be used are
0 many applications of spoken-language systems re- suboptimal with word lattice interfaces since they cannot

quire under•t•andin- of speech, instead of simple make use of the NLP information source. The natural
recognition, language processor also has much more work as it must

* appropriate use of constraints from NLP reduces the evaluate many possible sentences. This is also true for the
perplexity of the speech recognition task, increasing other approaches below.
word recognition accuracy,

• sharing of information between SR and NLP can im- N-BEST SENTENCES INTERFACE:
prove speech understanding by using acoustic cues
to disambiguate certain sentences. This approach is similar to the serial interface, but

the SR system produces the N best sentences instead of

OTHER APPROACHES the (N=I) best recognized sentence. As with the serial in-
terface, recognizers typically use some language modeling

Several ways to integrate SR and NLP have been (such as statistical bigrams and trigrams) when determin-

tried. They have the following advantages and disadvan- ing the top sentences. The NLP system can also produce
tages. an NL score for each sentence. It would then choose the

sentence with the best combined speech and NLP score. In

SERIAL CONNECTION BETWEEN SR AND NLP: the case of parse/noparse scoring by the NLP system, the
NLP system chooses the first sentence that parses[21.

In a serial connection, the SR system sends the most This approach permits interaction between the SR
likel sentence (based on acoustics) to a NLP system Ti prahprisitrcinbtenteSwhich interprets that sentence. a and NLP components with computation rate increasing

linearly with N. Some implementations[21 require that N

The advantage of this approach is that the compu- be known in advance. Researchers using this claim that it
tational burden placed on both the SR and NLP systems runs quicker than a stack-decoder based implements-
is relatively light. The SR system operates as if there are tion[31 that generates sentences on demand. In either
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case. if N is small the computation rate is low. However, 0 It allows for interactions between speech and NLP.
if the correct sentence ranks low in the' list of best sen- For instance, an acoustic recognition model can be
tences and NLP can correct this recognition error, then a altered if the NLP system judges that the word
large N is required and the N-best approach requires more should be emphasized due to its syntactic or seman-
computation than other approache-,s. Further, as sentence tic position.
length increases, the N required may increase exponential-
ly. In addition, this approach has the important advan-

tage that, from the perspective of the recognition system,

DYNAMIC NETWORK GENERATION finite-state language constraints are used. Thus, all of the

experience the speech recognition community has

Our approach, dynamic gram ar network genera- developed for dealing with finite-state-based speech recog-

tion, represents natural language knowledge in a state nition systems still applies to tis system. For instance, a
transition network, similar to finite-state language models standard beam-search pruning technique is used in this
used elsewhere for speech recognition systemsye .

straight-forward implementation of this approach is not
feasible, however, because typical NL systems would ten- SYSTEM IMPLEMENTATION
erate unmanageably large or infinite networks. Therefore,
the network is generated on the fly, and only the portions
of the network within a pruned search are expanded. Speech Recognition Processor
Thus, the state-transition network generated for a partic-
ular spoken sentence will be relatively small, and different This system's speech recognition component is SRI's
than that generated for a different utterance. DECIPHER speech recognition system[6]. It is a continu-

ous speech recognition system that recognizes speech ei-

The approach is described graphically in Figure 1. ther in a speaker independent or dependent fashion. It

The system runs as if it were a standard HMM-based uses discrete density 3-state hidden Markov models to

speech recognition system using a state-transition network represent phones. Four discrete probability densities are

based language model. When the system is started up, used per state to rnodcl the v;111tiu61 in vector-quanrtized

the state-transition network contains an initial state, a \lel-cepstra, qiiantizcd derixatics or these %`ei-cepstra,

list of the words that can leave that state (predictions), quantized energies. and their dlerivativcs. Word models

and markers indicating that the states that would be are constructed from network representations or the word

reached from these initial predictions are blocked--not yet pronunciations and from a set of phone models (context-

included in the state transition network. The recognition independent. left-biphone. right-biphone. triphone. and

system begins by searching for the words in the initial unique-phone-in-word models). The system uses a heuris-

state's prediction list using a standard beam search. When tic algc-ithm to determine which context to use, based on

a state is reached that is not in the network, the SR sys- the amount of training data available. However, the more

tern calls the NLP system which runs the parser, creates detailed models arc smoothed by averaging in less specific

the needed state, and generates predictions for that state. models with weights based on an SRI version of IB1I's

The SR system can then continue until it hlorkeQ ftw;n deleted-interpolation algorithm[71.

The process or acceptlng the completion of a word from a
state in the network and generating a new state is called a DECIPHER is routinely used with a finite-state

shift, as it corresponds to a shift in a shzft-reduce natural language model (the DARPA word-pair grammar) so con-

language parser[,'I. verting DECIPHER to be lised in this spoken language
system was relatively straight-forward.

This continues until the entire signal is exhausted.
Words ending at the ead of the signal are checked to see Natural Language Processor
if they reach a final state--a state such that the hy-
potheses reaching that state are acceptable as complete As we mentioned above, in the dynamic grammar
utterances--and the most probable final-state hypothesis is network approach to speech and natural-language genera-
chosen as the recognized sentence. tion the NLP incrementally generates a state transition

network. We implement this by adapting conventional
This approach allows a tight coupling of SR and parsing atgorithms, whereby states in the state transition

NLP algorithms and has the following advantages: network are used as indices to stored parsing
configurations. The parser is called by the recognizer with

0 It brings all knowledge to bear a soon as possible so a state identifier and a word that has been hypothesized
that extra work need not be done (for instance the by the recognizer starting in that state. The parser looks
recognizer will not pursue hypotheses that can be up the parsing configurations corresponding to the state
ruled out by NLP and vice versa). In contrast to an and attempts to advance each of them by the word by-
equivalent system based on word lattices, a pothesized by the recognizer. (The parsing algorithm in-
dynamic-grammar network system would not search corporates constraints from the left context, so not all
portions of the signal that correspond to word- words are acceptable in all parsing configurations.) The
lattice entries that are unlikely due to previous resulting parsing configurations are stored under a new in-
acoustics or natural language. dex, which is passed back to the recognizer as the succeed-

ing state. The NL processor also computes a set of word
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predictions for that state. consideration.

When a set of parsing configurations is generated, The second modification we made was wholly inter-
the NL processor can check whether that set of parsing nal to the parscr. Most parsing algorithms are position-
configurations has been generated before, and if so, it will based, in that they try to find phrases covering particular
pass back the state identifier that was previously associat- segments rf the input. Sinrc in the dynamic grammar
ed with those parsing configurations, to avoid unnecessari- network architecture, the parser does not have access to
ly expanding the recognition search space. In practice we information about locations of word hypotheses in the
have found that it is sufficient to simply let sequences of input signal, for our initial implementation we chose a
words that have the same possible grammatical categories stack-based parsing algorithm that did not require input
lead to the state, as other situations where sets of parsing position information. With this algorithm, a parsing
configurations are duplicated are extremely rare. configuration w0s taken to be a stack of grammatical

categories corresponding to a partial analysis of an initialFurther details of the NL processor implementation segment of the input signal. Later, we realized that it
are discussed below. was possible to implemeni, a position-based parser, where

the states in the state transition network played the role
Experimental Evaluations of the Architecture of input positions. In this parser', the data structures the

parser must keep track of are associated directly with
states, rather than with stacks. Since, in general, oneSpeeding Up Nb Processing state corresponds to many stacks, this parser builds many

fewer of these data structures, with a resulting increase in
efficiency.

Initially, we focused on efficient implementations of

the NL processor. Previous attempts at parsers for spo- The new parser was evaluated with the same 24 sen-
ken language systems had reported parse times of one or tence test set, with the results shown in Table 2.
more hours per sentence. Our first results showed thatthese times could be improved substantially, though those MeneaMan Cmlte
parse times were still far slower than real time. Table I Mean Mean Active
shows parse times for a set of 21 sentences tested in a Sentence Parsinm Active Words Word
speaker independent system using a perplexity-510 Leneth Time (sec) ner Frame Accuracy
syntax-only NL grammar for a 885 word subset of 71 12 204:3 88,4%
DARPA's resource management task[81. No word sequence Table 2.
probabilities are used. The parser runs in Protoog on a Parse Times for a Filtering State-Based Parser
SUN4/280 computer. For comparison, a perplexity 91.1
all-word grammar achieved 82.5% word correct and a per-
plexity 60 word pair grammar achieved 97.1% correct for Note that the NLP times are reduced by an order of
this test set. magnitude, although the mean number of words/frame

being evaluated by the HMM system are increased as
Mean Mean Mean Cumulative expected. Eliminating prediction sped up the parser by a

Sentence Parsing Active Words Word factor of 4.9 and using a state-based parser improved the
_Length Time (sec) per Frame Accuracy speed by a factor of 2.25.

7.1 131 1470 88.4%

Table 1. Extensions to the Grammar
Parse Times for a Prtdicting Stack-Based Parser The grammar used for the parsers discussed above

parsed only 36% of the sentences in the resource manage-
We next sped up NL processing substantially in two ment task. After these experiments were completed, the

different ways. First, we noticed that a very large propor- grammar was extended so that it covered the full ggi-
tion of the total NL processing time was consumed gen- Word vocabulary and parsed 91% of the resource manage-
erating word predictions for the recognizer; the perplexity ment sentences and 85% of the sentences in an
of the NL grammar was so high, however, that this independeqtly collected resource management database (a
resulted in only a modest amount of reduced work done portion or DARPA's TONE database with out-of-
by the recognizer. We therefore altered the interaction vocabulary items modified). Parse times increased with
between the recognizer and the NL processor, to eliminate this new grammar by a factor of 3.5.
the need to compute prediction lists in the NL processor.
In the modified architectur.e, the NL processor "predicts" Fast Match
the entire vocabulary in every state. This has the result
that sometimes the recognizer hypothesizes a word that is A fast match was added to the system. Every frame,
not a possible continuation of a state and the parser finds it uses acoustic evidence to rule out starting up about
that no parsing configurations in that state can be 80% of the words in the vocabulary without introducing
advanced by the word. In this case, the INL processor additional error. Thus, even without a predicting parser
asks recognizer to prune that hypothesis from further a particular state at a given time will only have about 200

instead of 901 predictions.
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Grammatical State-Width Pruning the capability of high speed multiprocessor computers or
sp~ecial pur Ipose speech recognition hardware.

The efficiency of our spoken language system archi-
tecture is sensitive to the amount of pruning that can be Our future plans include evaluating other search

doneby he -1M sysem.If he yste hadlyprues, strategies (e.g. stack decoding), improving the fast match
there will be an exponential increase in the number of capability, and precompiling mord of the run-time cornpu-
active wvords the system has to process as time moves on, tations the parser must perform. We will also incorporate
However, the system is well behaved with reasonable selectional restrictions and word sequence probabilities

pruning. ~ ~ ~ ~ ~ ~ ~ ~ ~ it Beas fti efudtaatog ot~our grammar to reduce the resulting perplexity and
sentences parse normally, there are some sentences that improve recognition performance. Finally we expect
require excessive computation. We found that the key evaluate recognition techniques that model the interac-

facor in onrolingth coputtin rte aslimiting tions of natural language, prosody, and phonology, in the
the maximum number or shifts in a sentence. Therefore, cneto u ih nerto cee
we devised the following algorithm that is very similar to REFERENCES
the standard HNIM-based beam search technique.

III Chow, Y.L., and S. Roukos, '-Speech Understanding Using a
"* During every frame the grammatical states are Unification Crammar," IEEE Inumraitonal Conference on

sorted by the best internal HMM-scores of each of Acon'ific.s, Speech, and Signal Processing, pp. 727-730, May,
the state's predictions. 1989.

" The system only shifts completed -words if the [2[ Schwartz, Richard, and Yen-Lu Chow, "The Optimal N-B-zst
Algorithm: An Efficient Procedure for Finding the Top N Sen-

word's predecessor grammatical state is one of the N tence Hypotheses," Proceedings of the DARPA Speech and
best states for that frame. Nntuiral Languatge Workshop, October, 1989.

That is, we keep a beam of grammatical states, and only 131 Paul, Dougla~s B-, "A CSR/NLP Interface Specification,"
perform shifts for states in the beam. Typical beam sizes Proceeding.i of the DARPA Speech and Natural Language
used are 20 or 30. Workshop, October, 1089.

141 Aho, Alfred V., and Jeffrey D. Ullman, Principles of Compilcr
Design, Addison-Wesley, Reading Massachusett~s, 1979. -

System Evaluation [S[ Lowerre, B.T., The Harpyp Speech Recognition System, PhD
Thesis, Cop Science Dept., Carnegie Mellon University, 1976.

161 Weintraub, MI.. MurveitH., Cohen,M.. PriceP., Bernstein,J ,
The system has been evaluated on a portion of the Baldwin.C., and Bell,D., 'Linguistic Constraint~s in Hidden

DARPA speaker dependent resource management task. Markov Model Based Speech Recognition," IEEE International
The results in Table 3 are for three speakers using 279 of Conference on Acoustics, Speech, and Signal Processing, May,

the 00 eveopmnt sntecesforthos spakes (he 7[ Jelinek, F., and R. Mercer, 'Interpolated Estimation of Mark-oy
other 21 sentences didn't parse). Source Parameters from Sparse Data," pp. 381-397 in Pattern

The results in Table 3 indicate that our ap~proach is Recognilian in Practice by E.S. Gelserna and L. N. lKanal (edi-
a promising one for large vocabulary spoken language sy"- toms), North-flolland Publishing Company, Amsterdam, The
tems. We have already achieved, for high perplexity syn- Netherlands. 1980.

tactic~~~~~~ 1rm as as ie ihnafco f2 fm 81 Price, P., Fisher, W.M., Bernstein, J. and Pallet, D S., -The
tatime rmnr, as ie withi reutn facrcon tion computatonral DARPA 1000-WVord Resource Management Database for Con-

reuiemeit (50 ctv wrd/rae)tatar t'th0 tinuous Speech Recognition," IEEE International Conference on
requremnts(250 acivewors/fame)tha ar wihinAroustics. Speech, and Signal Processing, April, 1088.

Mean Mean Mean SLS P-1000
Sentence Parsing Active Words Word Word

cltb 20 8.5 51 1 2801 84.7% 7 7. ý3%0'
pghi 20 8.1 49 2.107 87.4% 83.65%
rkm 20 8.1 so 2260 70.1% 73.2%.

Table 3.
Parse Times for Complete System

Dynamic Grammar Network Generation
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Train'Ing Set Issues in SRI's DECIPHER
Speech Recognition System

Hy Murvelt, Mitch Weintraub, Mike Cohen
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333 Ravenswood Ave.
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Abstract formls. The iiihque uwed to generate the riles am
SRI as evelpedthe ECIHERdescribed in Murveit$9 and Cohen90. These generate ap-SRI as dveloed te DEVM sstes, a proximately 40 pronuncizios per word a mieasurd onhidden Markov Model (HMMI) based conttinuous spech i te DARPA meourc managemenit vocabulary. Speaier-

recognition system typically used in a speak-er ý-indepen- idpnet poniaonprobabilities wre then estunat-
dentmaner.Iniialy w revew he ECIHER5y5 ad using "hs bushy word netwcxks and the forward-

teni, then we show that DECMIPER': q~ff backrward algorithm in DECIPIHER The networis am
independent performance improved by 2D% when the the pruned so that only die liktely remniaosi-
standard 3990-sentence speaker-independent oust aet was mantpil about fixfw pronunciations per word for
augmented with training data from dhe 7200-sentence re e reouc management Cask
sorc management speaker-dependent training sentences.
We show a furthe improvement of over 2D% when a Thus modeling of pnuitonis onie of the
version of corrective training was implemented. Finally waVys that DACUIPE is di.ingished from. other
we show improvement using parallel male- and female- HMM-basd systemus. We have shown in Cohen% tha
trained models in DECIPHER The word-error rate this modeling improves systen~ performance.

* when all three impovmets were combined was 3.7%
on DARPA's February 1989 speaker-independent test set Acoustic Modeling
using the standard perplexity 60 wotdpw gr ammiar. DJCIPHE builds and trains word models by

using context-based phone models arnanged according to
System Description dhe pronunciation networks for the ward being modeled.

Models used include unique-phone-in-word, phone-in.-
Front End Analysis word, triphouie, hilome, and generalized-phone form of

Deip er use a ~-b Mel-ceptr fia biphorue anid triphones, as well as otx-needn
end Twntyfiv M el iltrs pasing100aD 400 models. Simuilar contexts arm automatically smoothed to-
end.Twety-fve FT-Ml flter spnnin 10 to 400 gether, if uthey do not adequately model the training da-

hzamw used to derive 12 Mlckepstra coefficienits evr W, acodn to a .1 ; intepo600o
10-ins friwne. Four feanares are derived every tirain from aloih develpe at SRI (smlrto Jelinem~). The
this cepsif a sequence. They ame: acoustic models reflect both inter-word and across-word
- Vector-quantized energ y-normalized Mel-cepstra COarUIticltoE effects.
* Vector-quantized smoothed 40-ms time derivatives of Training proceeds as follows:

th Energ cpy - Iniialy, context-independent boot models we

- Smoothed 40-mus energy differences estimated from hantd-labeled portions ofthe tann
part of the TIMIT database.

We use 256-word spealrer-indepewdent code- * The boot models ame used as input for a 2-iteration
books to vector-quantize the Mel-cepsmr and die Mel- cotx-ndp e moel trining run, where
cepmtrl diferetioes. The resulting four-feature-per,- context-independent niodels we refined and
frame vector is used as input to the DECIPHE HMM- prnnito probabilities wre calculazed using the
based speech recognition sy~steml large 40-pronunciation word networks. As stated

above, these large networlts ame then pruned to about
Pronunciation Models four pronunciations per word.

DECIPHE uses pronunciation models generat-
ed by applying a phonological rule set to word base-
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Context-dependet models ar then estrmated from a perplexity 60 resource management gammar testing on
second 2-jim-aion forward-backward run, which uses DARPA's 300-sen• nce February 1989 speaker-indepen-
the context-independent models and the pruned dent tst set.
networks as input. Traininr data Sentences Word error

System Evaluation SD 7200 7.3

DECIPHER has been evaluated on the speaker- 51 3990 6.7
independent continuous-speech DARPA resource manage-
ment test sets [Pric88] [Pallet9]. DECIPHER was SI+TIMXT 7350 5.8
evaluated on the November 1989 test set (evaluated by SI+SD11190 53
SRI in March 1990) and had 6% word error on the per-
plexity 60 task. This performance was equal to the best Table 1.
previously reported error rate for that condition. We re- Word Error as a Function of Training Set
cendy evaluated on the June 1990 ask, and achieved
6.5% word error for a system trained on 3990 sentences Table I shows that performance improved as da-

and 4.8% word error using 11,190 training sentences. ta incrused, even when adding the out-of-task TIMIT da-
ta. The only exception was that training with 3990

Since the October 1989 evaluation, DECI- sentenes from 100 talkers was slightly better than 7200
PHER's performance has improved in three ways: sentences from 12 talkers. This is to be expected in a

" We noted when using dtt the sandard 3990-sentence ipeaker-independent system. This last result is consis-

resource management training set, that many of Otn with the findings in Kubala90 that showed that
DECIPHER's probability distributions were poorly there was not a big performance drop when the number

estimated. Therefore, we evaluated DECIPHER with of speaker was drastically reduced (from 109 to 12) in

several different amounts of training data. The largest speaker-indmendent systems. It is likely that more train-

training set we used, an 11,190-sen resource ing data would continue to improve performance on this
management training set, improved the word enor rate task; however, we believe that a more sensible study
by about 20%. would be to focus on how large training seus could im-

* We implemented a modified version of IBM's prove perm across tasks and vocabulars. (See,
corrective training algorithm, additionally improving for instance, Hon9O.)
the word error rate by about 20%.

"* We separated the male and female training data, Separating Male and Female Models
estimated different KM output distributions for
each sex. This also improved word accuracy by 20%. We experimented with maintaining sex consis-

tency in DECIPHER's hypotheses by partitioning male
These imprvements are described in more detail and female training data and using parallel recognition

below. systems as in Bush87. Two subrecognier are run in par-

allel on unknown speech and the hypothesis from either
Effects of Training Data r with the highest probability is used. The dis-

advantage of this approach is that it makes inefficient use
In a recent study, we discovered that DECI- of training data. That is, in the best scenario the male

PHER's word error rate on its training set using the per- models are tined from only half of the aining data
plexity 60 grammar was very low (0.7% over the 3990 and the female models use only half. This is inefficient
resource management sentences). Since the test-set error because even though there may be a fundamental differ-
rate for that system was about 7%, we concluded that ence between die two types of speech, they still have
the system would profit from more training data. To ny things in common and could profit from the oth-
test this, we evaluated the system with four databases as' alining data if used properly.
easily available to us as is shown in Table 1. There S/ re-
fers to the 3990-sentence speaker-independent portion of It is no wonder, then, that this approach has
the resource management (RM) damabase-109 peake been successful in digit recognition systems with an

30 or 40 sentences each, SD refers to the speaker-depen- abundance of training data for each parametr to be esti-

dent portion of that database-12 speakem 600 sentences mated, but has not significantly inproved performance

each, and T1MF/ refers to the training portion of the in large-vocabulary systems with a relatively small

TIMIT database-420 speakers, 8 sentences each. Note mount of training data [PauaS9]. To validate the idea of

that all SI and SD sentences am related to the resource sex conistency, we trained male-only and female-only

management ask, while TIMIT's sentences are not relat- versions of the DECIPHER speech recognition system us-

ed to that task. All systems were tested using a continu- ing the 11 190-sntence SI+SD training set to make sure
ous-speech, speaker-independent condition with the the data partitions had enough data. We produced SI+SD
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subsets with 4160 female and 7030 male sentences. These 4. We can not iterate the algorithm until the N-best re-
systems were tested on the DARPA February 1989 infomemment is implemented, because the second iera-
speaker-independent test set using the DARPA word- tic error nrae on the sentences that had been
pair grammar (perplexity 60) and ane compared below to corrected by the first iteration was under 0.3%.
a similar recognition system trained on all 11190 sen- O iu
teaces. the February 1989 test set by '4% (6.7% to 5.1%) which

Standard Malzlltnak is approximately the nprovement gained by Le=89 and

Male speakers 5.5 4.6 Bahl88.

Female speakers 4.9 4.0 Points 3 and 4 above am a concern, because they
limit the efficiency with which this algorithm could use

All speakers 5.3 4.3 its already limited training data. To examine dais, we

Table 2. Speaker-Independent %Word Error performed the following two experiments. (1) We add-

for Male/Female Parallel Recognizers ed a second pass of corrective tabiing. using the speaker-

(February 1989 SI Test Set) dependent RM training sentences (SD). (2) We combined
SD and the SI sentences. thereby using a larger overall

The results in Table 2 show a 19% reduction in training set, but continued to use one pass of corrective

the error rate when using sex-consistent recognition sys- traiming. Table 3 shows that, not surprisingly, though

terns. This is a significant error rate reduction. A closer System Traininh nError
look at the system's performance showed that it correct- SI 7%
ly assigned the talker's sex in each of the 300 test sen-
tences. I pass correction SI 5.1%

add 2nd SD pass Sl 4&6%

Discriminative Techniques Currently in

DECIPHER
no correction SI+SD 5.3%

We have implemented a type of corrective train-

ing [Bahl88, Lee89] in the DECIPHER system. Our im- 1 pass correction SI+SD 4.1%

plementation is similar to that described in Le489 with Table 3. Corrective Training
the following exceptions Qr notes: with Extra Data

1. We use four partitions (rather than two) for our de- (Uses February 1989 RM Test Set)
leted estimation technique. In this way, the recogni- there was improvement when extra data wer used as a
tion systems used tr, generate alignments for second pass for the corrective training algorithm, it was
corrective -•aining are as similar as possible to the better to use these data to simply augment the training
overall recognition system. data (4.6% venus 4.1% word error). h is also interst-

2. We do not alter the actual HMM counts for states, ing to note that the improvementg pined by corrective
but rather scale the states' vector output probabili- training with the 3990 SI sentences (6.7% to 5.1%, 24%

ties by the ratio (correct+4deletionstinsertions) few errors) was approximately equal to the improve-

divided by #correct. These counts are generated by ment gained by applying cormective training to the larger

frame alignments of the recognizer hypothems and 11190 SI+SD sentences (5.3% to 4.1%, 23% fewer er-

the correct sentence. This improves performance tors). This leads us to believe that lack of training data
from 5.9% word error to 5.1% on the February 1989 is not more of a bottleneck for corrective training than
test set wing the standard SI training set-the uncor- it is for the system as a whole.
rected system has 6.7% word error. The rmason for
this improvement may be that adjusting the counts Combining Corrective Training and
of a model affects other models (given our deleted
interpolation estimation smoothing algorithms) t Consistency
do not require correction. Scaling model probabili- We combined both sex consistency and correc-
ties only adjusts the models that require change. tive raing and arrived at the improvement shown in

3. We do not generate reinforenent error:. We Plan Table 4. We didn't achieve the same 20% improvement as

to do so using an N-best algorithm to generate alter- in the past, probably due to training data limitations.

nate hypotheses. Attempting the combined system with the stan-
dard 3990-sentence training set resulted in poor perfor-
mance, primarily because the female models used to train
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the corrective training partitions had only 870 sentences [Hon9O] Hon, Hsiao-Wuen, and Kai-Fu Lee, "On
of training data. Vocabulary-Independent Speech Modeling,"

Proceedings ICASSP-90.

Sytem D Woderror [JelinekU0] Jelinek. F. and R. Mercer, "Interpolated
Estimation of Markov Source Parameters from

Standard SI 6.7 Sparse Data,* pp. 381-397 in E.S. Gelsima and

Standard SI+SD 5.3 L.N. Kanal (editors), Pattern Recognition in
Practice, North Holland Publishing Company,

+disc SI 5.1 Amsterdam, the Netherlands.

+sex SI+SD 5.3 [Kubala90] Kubala, Francis, Richard Schwartz, and

+disc SI+SD 4.1 Chris Barry, "Speaker Adaptation from a
Speaker Independent Training Corpus,"

+disc+sex SI+SD 3.7 Proceedings ICASSP-90.

Table 4. Summary of Improvements [Lee89] Lee, KY., and S. Mahajan, "Corrective and
for DECIPHER Reinforcement Learning for Speaker-Independent

(Uses February 1989 RM Test Set) Continuous Speech Recognition," Technical

Report CMU-CS-89-100, Carnegie Mellon

Summary University, January 1989.

(Murveit89] Murveit, Hy , M. Cohen, P. Price, 0.We have shown significant improvements for Baldwin, M. Weintraub, and J. Bernstein,

the DECIPHER speech recognition system by (1) increas- "SBI's DECIPHER System," Proceedings of

ing training data size, (2) implementing corrective train- the DARPA Speech and Natural Language

ing, and (3) separating male and female training data. Workshop, February, 1989.

We have combined all three improvements to achieve our

best performing system, one that has a word-error rate [Pallet89] Pallet, D., Benchmark Tests for DARPA
of 3.7% on DARPA's resource management February Resource Management Database Performance
1989 speaker-independent test set. Evaluations," Proceedings ICASSP-89.

We believe that the use of a large training set al. (Paul89] Paul, Douglas, "The Lincoln Continuous Speech
lows significant improvements in speech recognition ac- Recognition System: Recent Developments and
curacy, and therefore we advocate using the larger Results," Proceedings of the DARPA Speech
training set as a standard in future system evaluations, and Natural Language Workshop, February,

1989.
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Evaluation of Spoken Language Systems:
the ATIS Domain

P. J. Price

SRI International
333 Ravenswood Ave.

Menlo Park, CA 94025

Abstract contains more phones and words than syntactic or se-
Progress can be measured and encouraged via standards mantic phenomena), (2) semantics is far more domain
for comparison and evaluation. Though qualitative as- dependent than phonetics or phonology, hence changing
sessments can be useful in initial stages, quantifiable domains is more labor intensive, and (3) there is less
measures of systems under the same conditions are es- agreement on what constitutes the "correct" analysis.
sential for comparing results and assessing claims. This However, MUCK, Message Understanding Conference,
paper will address the emerging standards for evaluation is planning the third in a series of message understand-
of spoken language systems. ing evaluations for later this year (August 1990). The

objective is to carry out evaluations of text interpreta-
tion systems. The previous evaluation, carried out in
March-June 1989, yielded quantitative measures of per-

Introduction and Background formance for eight natural language processing systems
Numbers are meaningless unless it is clear where they (4, 51. The systems are evaluated on performance on
come from. The evaluation of any technology is greatly a template-filling task and scored on measures of corn-
enhanced in usefulness if accompanied by documented pleteness and precision (7I.
standards for assessment. There has been a growing ap- So far, we have discussed the evaluation of automatic
preciation in the speech recognition community of the speech recognition (i.e., the algorithmic translation from
importance of standards for reporting performance. The human speech to machine readable text), and of some
availability of standard databases and protocols for eval- aspects of natural language understanding (i.e., the au-
uation has been an important component in progress in tomatic computation of a meaning and the generation,
the field and in the sharing of new ideas. Progrss toward if needed, of an appropriate response). The evalua-
evaluating spoken language systems, like the technology tion of spoken language systems represents a big step
itself, is beginning to emerge. This paper presents some beyond the previous evaluation mechanisms described.
background on the problem and outlines the issues and The input is spontaneous, rather than read, speech. The
initial experiments in evaluating spoken language sys- speech is recorded in an office environment, rather than
tems in the "common" task domain, known as ATIS (Air in a sound-isolated booth. The subjects are involved
Travel Information Service). in problem-solving scenarios. The systems to be rested

The speech recognition community has reached agree- will be evaluated on the answers returned from a com-
ment on some standards for evaluating speech recogni- mon database. The rest of this paper focuses on the
tion systems, and is beginning to evolve a mechanism for steps taken by the DARPA speech and natural language
revising these standards as the needs of the community community to develop a common evaluation database
change (e.g., as new systems require new kinds of data, as and scoring software and protocols. The first use of this
new system capabilities emerge, or as refinements in ex- mechanism took place June 1990. However, given the
isting methods develop). A protocol for testing speaker- greatly increased challenge, the first use of the mecha-
dependent and speaker-independent speech recognition nism is more a test of the mechanism than of the systems
systems on read speech with a 1000-word vocabulary, evaluated.
(e.g., (61), coordinated through the National Institute of It has become clear in carrying out the evaluation
Standards and Technology (NIST), has been operating mechanism that the needs of common evaluation are
for several years. This mechanism has inspired a healthy sometimes at odds with the needs of well-designed sys-
environment of competitive cooperation, and has led to tems. In particular, the common evaluation ignores di-
documented major performance improvements and has alogue beyond a single query-respone pair, and all in-
increased the sharing of methodologies and of data. teractive aspects of systems. A proposal for dialogue

Evaluation of natural language (NL) understanding evaluation is included in (31, this volume.
is more difficult than recognition because (1) the plie- Though the initial evaluation mechanism, described
nomena of interest occur less frequently (a given corpus below, represents a major effort, and an enormous ad-
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vance over past evaluations, we still fall short of a corn- very similar, which is not often the case. Since the moti-

pletely adequate evaluation mechanism for spoken IaD- vation for evaluating components of a system is for inter-
guage systems. Some forms of evaluation may have to be nal testing, there is less need to reach wide-spread agree-
postponed to the system level and measured in terms of ment in the community on the measurement methodol-
time to complete a task, or units sold. WVe need to con- ogy. System-internal measures can be used to evalu-
tinue to elaborate methods of evaluation that are mean- ate component technologies as a function of their design
ingful. Numbers alone are insufficient. We need to find parameters; for example, recognition accuracy -4n be

ways of gaining insight into differences that distinguish tested as a function of syntactic and phonological per-
various systems or system configurations. plexity, and parser performance can be measured as a

function of the accuracy of the word input. In addi-
tion, these measures are useful in assessing the amount

Issues of progress being made. and how changes in various corn-
In this section we will outline the major evaluation is- ponents affect each other.
sues that have taken up a good deal of our time and A useful means of evaluating system performance is

energy over the past several months, including: the sep- the time to complete a task successfully. This measure

aration of training and testing materials, black box vs. cannot be used to compare systems unless they are aimed

glass box evaluations, quantitative vs. qualitative eval- at completing the same task. It is, however, useful in

uation, the selection of a domain, the collection of the assessing the system in comparison to problem solving
data, transcribing and processing the data, documenting without the spoken language system in question. Fcr
ada transcribing thedatan obexample, if the alternative to a database query spoken
and classifying the data, obtaining canonical answers, language system is the analysis of huge stacks of paper-
and scoring of answers, work, the simple measure of time-to-complete-task can

be important in showing the efficiency gains of such a

Independent Training and Test Sets system.

The importance of independent training/development Time-to-complete-task, however, is a difficult measure

data and testing data has been acknowledged in speech to use in evaluating a decision-support system because

recognition evaluation for some time. The idea is less (1) individual differences in cognitive skill in the po-

prominent in natural language understanding. The fo- tential user population will be large in relation to the

cus in linguistics on competence rather than performance system-related differences under test, and (2) the puzzle-

has meant that many developers of syntactic and seman- solving nature of the task may complicate procedures

tic models have not traditionally evaluated their systems that reuse subjects as their own controls. Therefore,
on a corpus of observed data. Those who have looked care should be taken in the design of such measures.

at data, have typically referred to a few token exam- For example, it is clear that when variability across sub-

pies and have not evaluated systematically on an entire jects is large, it is important to evaluate on a large pool

corpus. Still more rare is evaluation on an independent of users, or to use a within-subject design. The lat-

corpus, a corpus not used to derive or modify the theory ter is possible if equivalent forms of certain tasks can

or model. There is no doubt that a system can eventu- be developed. In this case, each subject could perform

ally be made to handle any finite number of evaluation one form of the task using the spoken language system

sentences. Having a test suite of phenomena is essential and another form using an alternative (such as examin-

for evaluating and comparing competing theories. More ing stacks of papers, or using typed rather than spoken

important for an application, however, is a test on an in- input, or using a database query language rather than

dependent set of sentences that represent phenomena the natural language).

system is likely to encountex. This ensures that develop-
ers have handled the phenomena observed in the training
set in a manner that will generalize, and it properly (for Quantitative versus Qualitative
systems rather than theories) focuses the evaluation of Evaluation
various phenomena in proportion to their likelihood of Qualitative evaluation (for example, do users seem to
occurrence. That is, though from a theoretical perspec- like the system) can be encouraging, rewarding and can
tive it may be important to cover certain phenomena, in even sell systems. But more convincing to those who
an application, the coverage of those phenomena must cannot observe the system themselves are quantitative
be weighed against the costs (how much larger or slower automated measures. Automation of the measures is
is the resulting systemn) did benefits (how frequently do important because we want to avoid any possibility of
the phenomena occur). nudging the data wittingly or unwittingly, and of er-

rors arising from fatigue and inattention. Further, if
the process is automated, we can observe far more data

Black Box versus Glass Box Evaluation than otherwise possible, which is important in language,
Evaluating components of a system is important in sys- where the units occur infrequently and where the vari-

tern development, though not necessarily useful for com- ation across subjects is large. For these measures to be

paring various systems, unless the systems evaluated are meaningful, they should be standardized insofar as pos-
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sible, and they should be reproducible. These are the a quite restricted vocabulary. Therefore, it may be possi-
goals of the DARPA-NIST protocols for evaluation of ble to provide some training of subjects, and some tools
spoken language systems. These constraints form a real in the data ccolection methods so that a fixed vocab-
challenge to the community in defining meaningful per- ulary can be specified and feedback can automatically
formance measures. be given to subjects when extra-lexical material occurs.

This would meet the needs of spontaneous speech, of
common evaluation and of a fixed vocabulary (where one

Limiting the Domain could choose to include or exclude the occurring extra-
Spoken language systems for the near future will not lexical items in the evaluation).
handle all of English, but, rather, will be limited to a
domain-specific sub-language. Accurate modeling of the
sub-language will depend on analysis of domain-specific Collecting Data for Evaluation
data. Since no spoken language systems currently have In order to collect the data we need for evaluating spoken
a wide range of users, and since variability across users language systems, we have developed a pnambic system
is expected to be large, we are simulating applications (named after the line in the Wizard of O: "pay no at-
in which a large population of potential users can be tention to the man behind the curtain"). In this system
sampled. a subject is led to believe that the interaction is taking

The domain used for the standard evaluation is ATIS place with a computer, when in fact the queries are han-
using the on-line Official Airline Guide (OAG), which dled by a transcriber wizard (who transcribes the speech
we have put into a relational format. This application and sends it to the subject's screen) and a database wiz-
has many advantages for an initial system, including the ard who is supplied with a tool for rapid access to the
following: online database in order to respond to the queries. The

wizard is not allowed to perform complex tasks. The
It takes advantage of an existing public domain real wizard may only retrieve data from the database or senddatabase, the Official Airline Guide, used by hun- one of a small number of other responses, such as "yourdreds of thousands of people. query requires reasoning beyond the capabilities of the

It is a rich and interesting domain, including data on system." In general, the guidelines for the wizard are
schedules and fares, hotels and car rentals, ground to handle requests that the wizard understands and the
transportation, local information, airport statistics, database can answer. The data must be analyzed after-

wards to assess whether the wizard did the right t:ng.trip and travel packages, and on-time rates.

The subjects in the data collection are asked to solve
"* A wide pool of users are familiar with the domain one of several air travel planning scenarios. The goal

and can understand and appreciate problem solv- of the scenarios is to inspire the subjects with realistic
ing in the domain (this is crucial both for initial problems and to help them focus on problem solving. A
data collection for development and for demonstrat- sample scenario is:
ing the advantages of a new technology to potential
future users in a wide variety of domains). Plan a business trip to 4 different cities (of

"* The domain can be easily scaled with the technol- your choice), using public ground transporta-

ogy, which is important for rapid prototyping and mon wherou the cients an airplane
money where you can. rhe client is an airplane

for taking advantage of advances in capabilities. buff and enjoys flying on different kinds of air-

"* The domain includes a good deal that can be ported craft.
to other domains, such as generic database query
and interactive problem solving. Further details on the data collection mechanism is

provided in (21 in this volume.
Related to the issue of limiting the domain is the is-

sue of limiting the vocabulary. In the past, for speech
recognition, we have used a fixed vocabulary. For spon- Transcription Conventions
taneous speech, however, as opposed to read speech, how The session transcriptions, i.e., the sentences displayed
does one specify the vocabulary? Initially, we have not to the subject, represent the subject's speech in a nat-
fixed the vocabulary, and merely observed the lexical ural English text style. Errors or dysduencies (such as
items that occur. However, it is an impossible task to false starts) that the subject corrects will not appear in
fully account for every possible word that might occur, the transcription. Grammatical errors that the subject
and it is a very large task to derive methods to detect does not correct (such as number disagreement) will ap-
new words. It is also a very large task to properly han- pear in the transcription as spoken by the subject. The
dle these new words, and one that probably will involve transcription wizard will follow general English princi-
interactive systems that do not meet the requirements ples, such as those described in The Chicago Manual of
of our current common evaluation methods. However. Style (13th Edition. 1982). The tremendous interactive
there is evidence that people can accomplish tasks using pressure on the transcription wizard will inevitably lead
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to transcription errors, so these conventions serve as a evaluation set only if it is impossible for a person to tell
guide. without context what the preferred reading is. Another

This initial transcription will then be verified and issue is minor syntactic or semantic ill-formedness. Our
cleaned up as required. The result can be used as conven- guideline here is that if the query is interpretable, it will
tional input to text-based natural language understand- be accepted, unless it is so ill-formed that it is clear that
ing systems. It will represent what the subject "meant it is not intended to be normal conversational English
to say", in that it will not include dysfluencies corrected All presuppositions about the number of answers (either
by the subject. However, it may contain ungrammatical existence or uniqueness) will be ignored, and these are
input. the only types of presupposition failures noted to date.

In order to evaluate the differences between previ- Any other types of presupposition failure that make the
ously collected read-speech corpera and the spontaneous- query truly unanswerable will no doubt also have made
speech corpus, subjects will read the transcriptions of it impossible for the wizard to generate a database query,
their sessions. The text used to prompt this reading will and will be ruled out on those grounds. Queries that are
be derived from the natural language transcription while formed of more than one sentence will not automatically
listening to the spoken input. It will obey standard tex- be ruled out. The examples observed so far are clearly
tual transcriptions to look natural to the user, except interpretable as expressing multiple constraints that can
where this might affect the utterance. For example, for be combined into a single query.
the fare restriction code "VU/1" the prompt may appear Evaluatable queries will be identified by exception,
as "V U slash one" or as "V U one", depending on what i.e., those that are none of the following:
the subject said.

Finally, the above transcription needs to be further 1. context dependent,

modified to take into account various speech phenom- 2. vague, ambiguous, disambiguated only by context,
ena. according to conventions for their representation. or otherwise failing to yitld a single canonical
For example, obviously mispronounced words that are database answer,
nevertheless intelligible will be marked with asterisks,
words verbally deleted by the subject will be enclosed in 3. grossly ill-formed,
angle brackets. words interrupted will end in a hyphen,
some non-speech acoustic events will be noted in square 4. other unanswerable queries (i.e., those r .. given a
brackets, pauses will be be marked with a period approx- database by the wizard),
imately corresponding to each elapsed second, commas
will be used for less salient boundaries, an exclamation 5. queries from a noncooperahve subject.
ma.k before a word or syllable indicates emphatic stres,
and unusual vowel lengthening will be indicated by a Canonical Answers and Scoring
colon immediately after the lengthened sound. Some of Canonical answers will, in general, be the corrected ver-
the indications will be useful for speech recognition Sys- sion of the answer returned under the wizard's control.
tems, but not all of them will be included in the reference The will have to be cleaned up m the case that the
strings for evaluating the speech recognition output. wizard makes an error, or if the answer given by the

The various transcriptions are illustrated in the ex- wizard was the (cooperative) context-dependent answer,
amples below, with the agreed upon file extensions in which may differ from a context-independent answer, if
parentheses, where applicable: it exists. In the context of a database query system,

"* SESSION TRANSCRIPTION: the wizard is instructed to interpret queries broadly as
Show me a generic description of a 757. database requests. Thus, we believe that "yes/no" ques-
" NL TEXT INPUT tions will be in general interpreted as a request for a list,

S me a gne (.ali): rather than the word "yes" or "no", as in "Are there any
Show me a general description of a 757. morning flights to Denver?" Other conventions involve

"* PROMPTING TEXT (.ptx): treatment of strings for comparison purposes and ca-se-
Show me a general description of a seven fifty seven. sensitivity, the appearance of extra column% in tabular

answers, and the inclusion of identifying fields (see [I]
"* SPEECH DETAIL (.sro): for details).

<list> show me: a general description, of a seven Scoring is accomplished using standardized software,
fifty seven and conventions for inputs and outputs. Comparing

"* SPEECH REFERENCE (.snr): scalar answers simply means comparing values. Table

SHOW ME A GENERAL DESCRIPTION OF A answers are more inieresting, since in geisral the order

SEVEN FIFTY SEVEN of the columns is irrelevant to3 correctness. For single-
element answers, a scalar answer and a table containing
a single element are judged equivalent, for both specifi-

Data Classification cations and answers. For our first experiment with the
Once collected and processed, the data will have to be new protocols, sites were only required to report results
classified. Ambiguous queries will be excluded from the on the natural language component. The transcriptions
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were released a few days before the results were to be
reported. One site, CMU, reported results on speech
inputs. See [1] for further details on scoring.

Conclusions
The process of coming to agreement on conventions for
evaluation of spoken language systems, and implement-
ing such procedures has been a larger task than most of
us anticipated. We are still learning, and sometimes it
has been painful. However, the rewards of an automatic,
common mechanism for system evaluation is worth the
effort, and we believe the spoken language program will
benefit enormously from this effort. There still is a good
deal more work to do as we find ways to meet the con-
straints of evaluation in a way that makes sense for the
development of spoken language systems.
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Abstract

SRI is developing a spoken language system (SLS) that should pert W array Of issues not Prevnously faced. The issues dscussed in this paper

ral and efficient communication with an air travel information system. SLS include.

development at SRI divides roughly into three areas: speech recognioon, The choice of initial donains for such technolOgy
natural language processing, and human interface design.The paper presents The architecture for the integration of the two technologies
an overview of SRI's development effort and an analysis of selected techni-
cal challenges in subparts of this effort, including the choice of initial

domains for such technology, the architecture for the integration of the two • Evaluation of spoken language systems.

technologies, the attributes of goal-directed spontaneous speech, and the
evaluation of spoken language systems. 2.0 Domains

1.0 Introduction

Spoken language understanding is a technology in its infancy. The first sys-

tenms will be extremely limited, and we have little experience in the human

Combining speech recognition and natural language understanding will factors issues of integrating the technology into an application. Spoken ian-

vastly increase the number and range of potential applications for both tech- guage understanding is an exciting area for human-machine interaction

nologies. Speech recognition without natural language results in a transcrip, because people ame used to solving problems interactively by voice For this

Lion of the words spoken; adding an interpretation of what those words mean same reason, however, adding spoken language uride,-standing to an inter-

opens a vast range of possibilities in human-machine interaction. Natural face may lead the user to believe the system has reasoning and understand-

language technology without speech recognition requires typing skills and ing capabilities beyond current achievements.
makes unnecessary demands on the eyes, the hands, and the brain. Freeing
the eyes. hands, and brain of the user from the keyboard will allow for more Designing the human interface for inserting a new technology in an applica-

efficiency, better use of visual displays and mouse interactions, interactive tion is difficult, since we have no existing systems to observe. A promising

problem solving during hands-busy tasks, and flexible telephone applica- technique for gaining the required data on human-machine intractions is the

tions. By using spoken natural language, the user can focus more on the use of simulations of applications. Since variability across users in speech

problem to be solved and less on how to formulate it adequately for the com- and language is quite large, initial systems should focus on applications in

puter. which a large population of potential users can be sampled. The data thus

obtained can be used to develop initial systems and to develop methods for

A further motivation for the integration of speech recognition and natural obtaining more such data efficiently for future systems.
language understanding is the belief that each technology could be improved
by taking advantage of the other. Not every word can follow every ot)er The domain SRI has chosen for its first spoken-language. interactive, prob-

word- This is true in any language. Grammars are expressions of conditions lem solving system is air travel planning. This domain has several important

on possible word sequences. Constraining the possible., or likely, sequences advantages as a first area:

of words has had a major impact on large-vocabulary speech recognition It takes advantage of an existing public domaim real database, the Ofi-
because it effectively reduces the work done by the recognizer and elimi- cUa Airlne Guide, used by hun of thousands of people in the
nates many otherwise possible sources of confusion. Taking advantage of the UAtied States.

grammatical constraints of a language could be important in improving iti d intes n

speech recognition performance. With the exception of small domain-depen- f It is a rich and interesting domain, including data on schedules and

dent grammars, such constraint to dae typically comes from models of the fares. hotels and car rentals, ground traiportauon, local inforrauom

statistical properties of word sequences. Such grammars have difficulty airport stautstics, trp and travel packages, on-time rates, and so on.

expressing constraints that are based on grammatical relations that may svan • A wide pool of users are familiar with the domain and can understand

an arbitrary number of words, lust as natural language constraints could and appreciate problem solving in the domain. (This is crucial both

improve speech recogniton, information from speech could improve natural for initial data collection for development and for demonstrating the

language understanding: Speech includes much information that is not indi - advantages of a new technology to potential future users in a wide

cated in the text. such as lexical. phrasal and contrastive stress, and prosodic variety of domains.)

groupings of words. Such information can aid lexical decisions (e.g., is the , The domain can be easily scaled with the technology, which is impor-

word "OBject" or "obJECT") as well as syntactic and semantic decisions. tant for rapid prototyping and for taking advantage of advances in

capabilities.
The attempt to go beyond speech transcription and to go beyond text under- * The domain includes a significant amount that can be ported to other
standing by moving toward spoken language understanding opens an excit- domains, such as generic database query and interactive problem
ing new array of possibilities for human-machine interaction. It also opens a solving.
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3.0 Integration Architecture SR I's approach. called dynaTic amw,, net.-ork (DGN) generation (Murý
veit & Moore 1990), represents natural language knowledge in a state transt-
tion network, similar to finite-state language models used elsewhere for
speech recognition systems, A straighcfirward implemeniation of this

3.1 Previous Approaches approach is not feasible, however, because typical NIL systems would gener-
at unmanageably large or infinite networks Therefore. the network is gen.

A speech recognition component might communicate in several different erated on the fly. and only the porons of the network within a pruned search
ways with a natural language understanding component. Perhaps the most ame expanded. Thus. the state-transition network generated for a paxricular
straightforward approach is a serial connection. In this scheme. the speech is spoken sentence i 1, be relatively small, and different from that generated
input to the recognition system which, on the basis of the speech alone, out- for a different utlte .;e.
puts its best hypothesis to the natural language understanding system, which
computes a meaning on the basis of text alone. There is no feedback in this The approach is descnoed graphically in Figure I The system runs a& if nt
scheme: the speech component does not have access to syrntax and semantics were a standard speech recognition system based on a hidden Marko, model
in hypothesizing words, and the natural language component does not have (HMM) using a language model based on a state-transtuon network When
access to, for example. the prosody of the speech for understanding contras- the system is started up. the state-transition network contains an initial state,
tive stress. This approach has the advantage of being simp;e and of putting a list of the words that can leave that state (predictions ý, and markers indicat-
no additional effort into either of the two component technologies. I, also has ing that the states that would be reached from these iniual predictions are
the advantage of requiring minimal communication between two culturally blocked--not yet included in the state transition network The speech recog-
distinct groups: the engineers that dominate t.ie speech recognition commu- nition (SR) system begins by sear:hing for the words in the initial state's
nity and the artificial intelligence community that dominate- natural Ian- prediction list u,ýn a standard beam search When a state is reachcd hat is
guage understanding. not in the net% the SR system calls the natural language processing

(NLP) system v, *.-.h runs the parser, and creates the needed state The SR
Seai integration is. however, suboptimal because it does nc.t take adcantage system can then continue until it b~ocks jigair, The process of accepting the
of all the informauton available. A sentence that is misrecognized may have completion of a word from a state in the network and generating a new state
little hope of receiving a proper interpretation. We know that humans use a is called a shift, as it corresponds to a shift in a skf,-.reduce natural language
good deal of knowledge about syntax and semantics in interpreting %,hai parser (Aho & Ullman 1979.
another person has said. A spoken language system should be able to take
advantage of this information as well. Modifications to the stict senal archi- The shift process continues until the entire signal is exhausted Words ending
tueture include sending a large lattice of words from the speech recognition at the end of the signal are checked to see if they reach a final state--a state
component or a sequence of sentence hypotheses. This allows the syntax or such that the hypotheses reaching that state are acceptable as complete utter-
semantics to explore more than just the best speech hypothesis. Sending a ances-and the most probable final-state hypothesis is chosen as the recog-
large lattice can reduce the error rate, provided the correct set of words is nized sentence.
somewhere in the lattice or sentence list. Architectures of this type have been
explored (Schwartz & Chow 1989; Paul 1989). However, a tighter integra. This approach allows a tight coupling of SR and NLP algorithms and has the
tion should improve performance by allowing more communication among following advantuges:
the components earlier in the process.

t It brings all knowledge to bear as soon as possible so that extra work
need not be done (for instance, the recognizer will not pursue hypoth-

32 SRI's Frame-level Integration eses that can be ruled out by NLP and vice versa). In contrast to an

equivalent system based on word lattices, a dynauc-grammar net-More communication between the speech and the understanding compo- work system would not search portions of the signal that correspond
nents involve more complex architectures, but should improve both the to word-lattice entries that are unlikely according to previous acous-
speed and the accuracy of the spoken language system. SRI is investigating a tics or natural language.
unique frame-level integration (information between the two components is • It allows for interactions between speech and NLP. For instance, an
exchanged every 10 msec) that allows a computationally efficient use of nat- acoustic recognition model can be altered if the NtP system judges
ural language constraints in the speech recognition search. This system that the word should be emphasized given its syntactic or semantic
architecture allows for independent development yet integrated application position.
of constraints from phoneucs through semantics.

Feature HMM Word star word ar state i ..I- [ Tr~~ansition ...------ Feaur )rd ... ..... r recognized string

Extra n acoustic rinished word arc Net Processor i
speech features ship• extendl next

Dynamic Grammar Networks iN
in Speech Recognition and turalSLanguage

Natural Language Processing LParseru
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In addition, this approach has the imprriant adN ar::ge that. from the We created templates corresponding to several common type% of information

perspective of the recognition system., finte-sw.±; an;guage con- that can be produced bs the system (for example. schedules of flights, fares.

straints are used. Thus. all of the experience the speech recognition seat availability. etc.) Templates are triggered based on the existence of ke)-

community has developed for dealing with fini- -state-based speech words within a sentence, and multiple templates can be tn-gered for the

recogniuion systems still applies to this system For instance, a stan- same sentence. Templates contain slots such as the ongin and destination of

dard beam-search pruning technique is used in tn'is system (Lowerre a flight in question. The slots are filled in from phrases following slot-key-

1976). words. Thus, for example, in the sentence "What flight, leave San Francisco
for Boston on Sunday"' the word flighis wiU be a keyword triggenng the

"Flights" template. "leave" will cause the next phrase (if it is a city or air-
port) to be placed in the from-slot. "for" will cause the next phrase (if it is a

4,0 Goal-Directed Speech city or airport) to be placed in the to-slot, and on (if the next phrase is a urne)
will cause the utme slot for the flights question to be filled.

Template hypotheses are scored according to the percentage of content
When a person is dictating to a system the goal is to communicate the words- words used in filling the slots of the template. The template with the highest

the speaker is more likely to enunciate carefully and to focus on how the score is selected for interpretation. However. this grammar has a "'cut-off"

words are produced. When, however, a person is involhed in interactive parameter for template scores that can be set to trade off wrong answers with

problem solving, the focus is not. or should not be. on the speech itself. but no answers. That is, when the system is unsure, it can either guess, or adrrut

on the problem to be solved. This means that the speech is likely to be less that it doesn't know. Different applications would require different settings

careful and more casual. In particular, this means that there may be more of this parameter. Our initial results with this system are very encouraging.

variability in pronunciation, and that segments and syllables may be more On a fair test (testing on data not used in development) using DARPA stan-

likely to be reduced or deleted. It also means that more instances of "non- dards for evaluation, we recently obtained the results shown in Table I for

standard" grammatical forms will occur. various setungs of the cut-off parameter.

4,.1 Phonological Variation

TABLE I PARSING PERFORMANCE AS A FUTNCTION OF CUT-
SRI has partially addressed the issue of phonological variation by incorpo- OFF
rating detailed, statistically trained models of possible pronunciations for

words (Cohen 1989, Cohen et al. 1990). The rules for pronunciation varia-

tions are created once for English and then can be applied to au tomatically Cut-off Right Wrong No Answer

generate a network of possible pronunciations for any new word. The likeli- 0,0 55 13 22

hoods of the variants can also be automatically estimated on the basis of

observations of the occurrences of similar instances in training data that need

not contain the new words. 1.0 37 2 51

These are very preliminary results, and much work remains to be done to
4.2 Grammatical Variation combine the two grammars.

The common production of non-standard grammatical forms brings into

focus the trade-off between complete understanding of a given utterance and

reliance on alternative techniques for interpretation. Even within a restricted

domain, ful understanding of any utterance, is difficult to accomplish. Lan- 5.0 Evaluation

guage is productive, so new constructions appear frequently. Further, people

often get distracted or change their minds in mid-sentence, which can result

in wide deviations from"standard" language structure. Therefore, it seems

useful to allow some flexibility in what the grammar will allow. However, Progress can be measured and encouraged via standards for comparison and

accommodating more constructions typically requires more computation evaluation. Although qualitative assessments can be useful in initial stages,

(and longer waiting time for the user), and also will provide less constraint quantifiable measures of systems under the same conditions are essential for

(and thus make greater demands of accuracy on the recognition component). comparing results and assessing claims. Numbers are meaningless unless it

One solution to this problem is to bring more knowledge sources to bear, is clear where they come from. The evaluation of any technology is greatly

such as dialogue or plan models. However, a new domain has little data enhanced in usefulness if accompanied by documented standards for assess-

available on which to base a plan model, and poor models can perform worse ment. Them has been a growing appreciation in the speech recognition com-

than no model at all. At SRI we are exploring various combinations of tight munity of the importance of standards for reporting performance. The

and flexible grammars, trying to obtain the advantages of both. For the time availability of standard databases and protocols for evaluation has been an

being, SRI is pursuing the idea of cascading an analytical, linguistically- important component in progress in the field and in the sharing of new ideas.

based grammar with a template-filler grammar so that the template filler can Progress toward evaluating spoken language systems, like the technology

analyze those sentences that the analytical system cannot handle, itself, is beginning to emerge. The following issues have been important in

coming to agreement on standards for evaluation.

4.3 Template Grammar

In our initial work in this area, we have constructed a template-based gram-
mar based )n an analysis of frequently occurring patterns in the air travel
planning domain.
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5.1 ln•ependent Training and Test Sets 5.6 Canonical Answers and Sconng.

The importance of independent trainingldevelopment data and testing data Canonical answers are, in general, the answer returned under the wizard's
has been acknowledged in speech recognition evaluation for some time. The control. These answers will have to be cleaned up if the wizard makes an
idea is less prominent in natural language understanding because, from a the- error, or if the answer given by the wizard was the (cooperative) context-
oretical perspective, it may be important to work on a certain class of phe- dependent answer, which may differ from a context-independent answer, if it
nomena. In an application, however, the coverage of a certain class of exists. Scoring is accomplished using standardized software, and conven-
phenomena must be weighed against the costs (how much larger or slower is tions for inputs and outputs.
the res ulting system) and benefits (how frequently do the phenomena occur).
The only fair test of coverage in this sense is a test on a sample of data simi- The process of coming to agreement on conventions for evaluation of spo-
lar to that to be used in the application, but not seen during development, ken language systems, and implementing such procedures is difficult and

time-consuming. However, the rewards of an automatic, common mecha-
nism for system evaluation is worth the effort, and we believe that spoken

5.2 Black Box versus Glass Box Evaluation language system development will benefit enormously from this effort

Evaluating components of a system is important in system development,
although not necessarily useful for comparing various systems, unless the 6.0 Summary
systems evaluated are very similar, which is not often the case. Since the
motivation for evaluating components of a system is for internal testing,
there is less need to reach wide-spread agreement in the community on the
measurement methodology. System-internal measures can be used to evalu- In sum, workstations equipped with spoken language systems have the
ate component technologies as a function of their design parameters; for potential to increase user efficiency in interactive problem-solving. Natural
example, recognition accuracy can be tested as a function of syntactic and language input allows the user to formulate more complex questions and
phc•nological perplexity, and parser performance can be measured as a func- commands more efficiently and more naturally. Spoken natural language can
tion of the accuracy of the word input. In addition, these measures are useful increase user efficiency, can reduce cognitive load, and cn-. provide an alter-
in assessing the amount of progress being made, and how changes in various nate input modality to improve system robustness. SRI's research suggests
components affect each ote., that successful development of SLS technology requires an appreciation of

the new challenges associated wiC. acceptance of user input that cannot be
defined beforehand. Furthermore, system integration design decisions can

5.3 Quantitative veJnus Qualitative Evaluation affect how well the system can deal with these new input forms.

Quahtative evaluation (for example, do users seem to like the system) can be Refemces
encouraging, but mor convincing to those who cannot observe the system
themselves are quantitative automated measures. Automation of the mea- A. Aho and J. Ullman (1979) Principles of Compiler Design. Addison-
sures is important because we want to avoid any possibility of nudging the Wesley, Reading Mass.
data wittingly or unwittingly, and of errors arising from fatigue and inatten- M. Cohen (1989) "Phonological Structures for Speech Recognition,"
tion. Further, if the process is automated, we can observe far more data than PhD Thesis, Computer Science DepL. University of California,
otherwise possible, which is important in research on language, where many Berkeley.
units occur infrequently and where the variation across subjects can be large. M. Cohen, H. Murveit, J. Bernstein, P. Price and M. Weint-aub (1990)
For these measumes to be meaningful, they should be standardized insofar as "The DECIPHER Speech Recognition System-r Proc. IEEE
possible, and they should be reproducible. DECIP Re n.

B. Lowerre (1976) The Harpy Speech Recogranion System. PhD Thesis,
5.4 Collecting Data for Evaluation Computer Science Dept., Carnegie Mellon U.

In order to collect the data we need for evaluating spoken language systems, H. Murveit and R. Moore (1990) "Integrating Natural Language Con-

w e have developed a pnambic system (named after the line in the 14izard of straints into HMM-based Speech Recognition." Proc. IEEE

0:: "pay no attention to the man behind the curtain"). In this system a sub- ICASSP-90.

ject is led to believe that the interaction is taking place with a computer, D. Paul (1989) "A CSR/NLP Interface Specification," Proc. of the
when in fact the querie are handled by a transcriber wizard (who transcribes DARPA Speech and Natural Language Workshop. OCL 1989.

the speech and sends it to the subject's screen) and a database wizard who is R. Schwartz & Y-R Chow (1989) "The optimal N-Best Algorithm: An
supplied with a tool for rapid access to the on-line database in order to Efficient Procedure for Finding the Top N Sentence Hypotheses."
respond to the queries. The wizard is not allowed to perform complex tasks. Proc. of the DARPA Speech and Natural Language Workshop. OcL
The wizard may only retrieve data from the database or send one of a small 1989.
number of other responses, such as "your query requires reasoning beyond
the capabilities of the system." In general, the guidelines for the wizard are
to handle requests that the wizard understands and the database can answer. We gratefully acknowledge support from SRI internal funding, DARPA and
The data must be analyzed afterwards to assess whether or not the wizard did NSF. Support from DARPA is through the Office of Naval Research contract
the right thing. N00014-90-C-0085. This matenal is based upon work suppored by the

National Science Foundation under Grant No. IRI-87204403. The govern-

5.5 Transcription Conventions ment has certain rights in this material. Any opinions, findings, and conclu-
sions or recommendations expressed in this material are those of the authors

The session wanscriptions, Le., the sentences displayed to the subjecL repre- and do not necessarily reflect the views of the National Science Foundation.
sent the subject's speech in a naural English text style. In order to perform
automatic evaluation, we must agree on conventions for representing what
the subject said. and we must implement procedures to ensure that these con-
ventions are constsntly used.
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ABSTRACT In June 1990, the first SLS dry run evaluated only tran-
scribed spoken input for sentences that could be interpreted

The DARPA Spoken Language effort has profited greatly from its independent of context. At the DARPA workshop in Febru-
emphasis on tasks and common evaluation metrics. Common, ary 1991, researchers reported on speech recognition. spo-
standardized evaluation procedures have helped the community to ken language understanding, and natural language
focus research effort, to measure progress, and to encourage com- understanding results for context-independent sentences
munication among participating sites. The task and the evaluation and also for pairs of context-setting + context-dependent
meorics, however, must be consistent with the goals of the Spoken sentences. At the present workshop, we witness aiother
Language program, namely interactive problem solving. Our evil- major step: we are evaluating systems on speech, spoken
uation methods have evolved with the technology, moving from language and natural language for all evaluable utterances
evaluation of read speech from a fixed corpus through evaluation within entire dialogues, requiring that systems handle each
of isola•ed canned sentences to evaluation of spontaneous speech sentence in its dialogue context. with no externally sup-
in context in a canned corpus. A key component missed in current plied context classification information.
evaluations is the role of subject interaction with the system.
Because of the great variability across subjects, however, it is nec-
essary to use either a large number of subjects or a within-subje.t 2. EVALUATION METHODOLOGY:
design. This paper proposes a within-subject design comparing
the results of a software-sharing exercise carred out jointly by WHERE ARE WE?
MIT and SRI.

The current measures have been andl will continue to be
important in measuring progress, but they do not assess the

1. INTRODUCTION interactive component of the system. a component that will
play a critical role in future systems deployed in real tasks.

The use of a common task and a common set of evaluation Indeed, some current metrics may penalize systems that
metrcs has been a cornerstone of DARPA-funded research attempt to be co-operative (for example, use of the

weighted error, see below, and the maximal answer con-in speech and spoken language systems. This approach straints). We propose a complementary evaluation para-

allows researchers to evaluate and compare alternative stratsm.ke pose ao e evaluation para -

techniques and to learn from each other's successes and digm that makes possible the evaluation of interactive

failures. The choice of metrics for evaluation is a crucial systems. In this section we outline the current state of eval-

component of the research program, since there will be gy po g

strong pressure to make improvements with respect to the The current evaluation procedure is fully automated, using
metric used. Therefore. we must select metrics carefully if a canned corpus as input and a set of canonical database
they are to be relevant both to our research goals and to tuples as output reference answers. The evaluation mea-
transition of the technology from the laboratory into appli- sums the recognition and understanding components of a
cations. spoken language system. based on the number of correctly

answered, incorrectly answered, and unanswered queries.
The program goal of the Spoken Language Systems (SLS) Thesere n incorrated, and nan ber quero-

effort is to support human-computer interactive problem duces are then incorporated into a single number to pro-

solving. The DARPA SLS community has made significant percent "incorrect" (this formulation is equivalent to h

progress toward this goal, and the development of appropn- minus the "Score", where the "Score" is the percent "Cor-

ate evaluation metrics has played a key role in this effort. minus the perent " Score"th."
We have moved from evaluation of closed vocabulary, read rect" minus the percent "Incorrect)."

speech (resource management) for speech recognition eval-
uation to open vocabulary for spontaneous speech (ATIS).
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To date. evaluation has focused on only half of the user-to- 3. Discarding Interactive Dialogue: We throw out of the
system-to-user loop: these measures evaluate how well the common evaluation all interactive (particularly
system understands what the user says. but they ignore how mixed initiative) dialogue.
felicitously the system answers the user. The use of a
canned corpus effectively precludes any attempt by the sys- Alternative I was rejected as stiflg experimentation in
tern to direct the course of the conversation, including elic- building interactive systems. Alternative 2 was described in
iting missing information from the subject, carrying on a 16]. but some sites have felt that it was too burdensome to
clarification dialogue (for ambiguous or misunderstood implement (multiparty dialogue tracking is not an immedi-
input) or providing partial answers. For example, suppose ate requirement for our current spoken language systems).
the user says "I want to go to Dallas next Sunday". There We are left with Alternative 3, disallowing interactive dia-
are a number of ways for the system to respond: logue in evaluation. This is cause for concern, since using

spoken language systems for interactive problem solving is
1. Ask for a place of departure: a shared goal [9]. It also leaves open the possibility that we

"SYSTEM: "Where are you leaving from?" inadvertendy direct our research toward strategies that max-
imize our current measures but may not translate to any

2. Inform the user that the information is incomplete: measurable gains when used in real-world applications-
SYSTEM: "Please give both a place of depar- The push tcward a single-number, automated, evaluation
ture and a destination." score has encouraged system builders to adopt strategies

that maximize this score. To arive at a single number, it is
3. Show all flights arriving in Dallas from anywhere: necessary to combine right answers, wrong answers, and

"no answers". The current formula makes a wrong answer
SYSTEM: "Here are the flights arriving in Dallas twice as bad as saying "I don't understand." As indicated by
from anywhere." Appelt at the October 1991 Spoken Language Interim Meet-

ing, these strategies may not always be the most helpful to a
4. Refuse to answer the question, with some diagnostic user interacting with the system to accomplish a task. For

message: example. in our current evaluation framework, the answer
in the following interchange could be counted as wrong,

SYSTEM: "I'm sorry, there are too many flights because the information would be insufficiently restrcted:
to show; please give me more information." USER: Show me flights from Boston to Dallas leaving

5. Refuse to answer the question: tomorrow on some kind of wide-body airplane

SYSTEM: "Please rephrase your question." SYSTEM: You want to see flights from Boston to Dal-
las leaving tomorrow, but I didn't understand the rest

Obviously some of these responses seem more helpful than of the sentence; here are tomorrow's flights from Bos-
others (although it is not immediately clear that there is a ton to Dallas: (shows theflights but doesn't restrict answer
"best" response). In any case, what the user says next to wide-bodies).
depends on which strategy the system adopts. For example, Similarly, the following interchange would typically be
if the first strategy is chosen, where the system asks the user
to specify a departure city, the user might well respond scored correct:
"Boston." This makes sense as an answer to System USER: Show me the flights to Boston amving before 7 am.
Response 1, but is not easily interpreted if the system uses
System Response 2: "Please give both a place of departure SYSTEM: Here are the flights from anywhere to Bos-
and a destination." Maintaining coherence in dialogue ton arriving before 7 a.m.: (shows allflights to Boston
depends on what the system says to the user during data from anywhere arriving before 7 a.m.).
collection. If we continue to use only canned dialogue in
evaluation, then we can choose among ways to evaluate Meanwhile the following interac:ion counts as "unevalu-
systems: able" because the system takes the initiative, providing a

(possibly irreproducible) context necessary to interpret the
I, Canonical Response: All systems must provide the user's next input:

identical response to each situation, USER: Show me the flights to Boston arriving before 7 a.m.

2. Dialogue Resynchronization: Each system must be
able to process the data collection system's response,
and resynchronize its state based on what the user USER: Dallas
received as a response during data collection; SYSTEM: Here are the flights to Boston from Dallas

arriving before 7 a.m.:
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To move this technology toward realistic applications, we The SRI SLS employs the DECIPHERu' speech recogni-
need to focus on building useful systems. This requires that tion system [41 serially connected to SRI's Template
we explore trade-offs between guessing, partial answers, Matcher system [7.1]. The pruning threshold of the recog-
reporting lack of understanding, and having a clarification nizer was tuned so that system response time was about 2.5
dialogue with the user. We also need to explore different times utterance duration. This strategy had the side-effect of
styles of interaction between system and user. In addition. pruning out more hypotheses than in the comparable bench-
most aspects of the system interface (particularly, the form mark system. and a higher word error rate was observed as a
of the output) are not being assessed at all using current consequence. The system accesses the relational version of
memcs (e.g., display of information, presence or absence of the Official Airline Guide database (implemented in Pro-
spoken output, mixed initiative strategies). We need to log), formats the answer and displays it on the screen. The
develop complementary evaluation techniques that allow us user interface for this system is descnbed in [ 16]. This sys-
to make progress and measure performance on interactive tern, referred to as the SRI SLS, will be compared to the
systems, rather than confining ourselves to a metric that hybrid SRI/MIT SLS. The hybrid system employs the iden-
may penalize cooperativeness. Further, we need a sanity tical version of the DECIPHER recognizer, set at the same
check on our measures to reassure ourselves that gains we pruning threshold. All other aspects of the system differ. In
make according to the measures will translate to gains in the SRI/MIT hybrid system. the DECIPHER recognition
application areas. The time is right for this next step, now output is connected to MIT's TINA [15] natural-language
that many sites have real-time spoken language systems. understanding system and then to MIT software for data-

base access, response formatting. and display. Thus. the
experiment proposed here compares SRI's natural language

3. METHODS (NL) understanding and response generation with the same
components from MIT. We made no attempt to separate the

We have argued that interactive systems cannot be evalu- contribution of the NL components from those of the inter-
ated solely on canned input; live subjects are required. face and display. since the point of this experiment was to
However, live subjects can introduce uncontrolled variabil- debug the methodology; we simply cut the MIT system at
ity across users which can make interpretation of results the point of easiest separation. Below, we describe those
difficult. To address this concern, we propose a within-sub- factors that were held constant in the experiment and the
ject design, in which each subject solves a scenario using measures to be used on the resulting data.
each system to be compared, and the scenario order and
system order are counterbalanced. However, the within-
subject design requires that each subject have access to the
systems to be compared, which means that the systems
under test must all be running in one place at one time (or Data collection will proceed as described in Shrnberg et al.
else that subjects must be shipped to the sites where the sys- 1992 [16] with the following exceptions: (I) updated ver-
tems reside, which introduces a significant time delay). sions of the SRI Template Matcher and recognizer will be
Given the goal of deployable software, we chose to ship the used; (2) subjects will use a new data collection facility (the
software rather than the users, but this raises many infra- room is smaller and has no window but is acoustically simi-
structure issues, such as software portability and modular- lar to the room used previously); (3) the scenarios to be
ity, and use of common hardware and software. solved have unique solutions; (4) the debriefing question-

naire will be a merged version of the questions used on
Our original plan was to test across three systems: the MIT debriefing questionnaires at SRI and at MIT in separate
system, the SRI system, and a hybrid SRI-speech/MIT-NL experiments; and (5) each subject will solve two scenarios.
system. SRI would compare the SRI and SRI-MIT hybrid one using the SRI SLS and one using the SRI/MIT hybrid
systems; MIT would compare the MIT and SRI-MIT SLS. Changes from our previous data collection efforts are
hybnds. The first stumbling block was the need to license irrelevant as all comparisons will be made within the exper-
each system at the other site; this took some time, but was imental paradigm and conditions described here.
eventually resolved. The next stumbling block was use of
site-specific hardware and software. The SRI system used MIT designed and tested two scenarios that were selected
D/A hardware that was not available at MIT. Conversely, for this expenment:
the MIT system required a Lucid Lisp license, which was SCENARIO A. Find a flight from Philadelphia to Dallas
not immediately available to the SRI group. Further, that makes a stop in Atlanta. The flight should serve break-
research software typically does not have the documenta- fast. Find out what type of aircraft is used on the flight to
tion, support, and portability needed for rapid and efficient Dallas. Information requested: aircraft type.
exchange. Eventually, the experiment was pared down to
comparing the SRI system and the SRI/MIT hybrid system SCENARIO B. Find a flight from Atlanta to Baltimore. The
at SRI. These infrastructure issues have added considerable flight should be on a Boeing 757 and arrive around 7:00
overhead to the experiment. p.m. Identify the flight (by number) and what meal is served
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on the flight. Information requested: flight number, meal correct answers may be viewed as "better" However,
type. other factors may well be involved that correctness

We will counterbalance the two scenarios and the two sys- does not measure. A correlation of correctness woth

tems by having one quarter of the subjects participate in user satisfaction will be a stronger idicaton of the
each of four conditions: usefulness of this measure. Lack of correlation might

reveal an interaction with other important factors.
I. Scenario A on SRI SLS, then Scenario B on SRI/

MIT hybrid SLS - Time to complete task, as measured from the first
push-to-talk until the user's last system action. Once

2. Scenario A on SRI/MIT hybrid SLS. then Scenario B task and subject are controlled, as in the current
on SRI SLS design, making this measurement becomes meaning-

3. Scenario B on SRI SLS, then Scenario A on SRI/ ful. A system which results in faster completion
3. Sceario I SLS tn Stimes may be preferred, although it is again impor-
M1T hybrid SLS and tant to assess the correlation of time to completion

4. Scenario B on SRI/MIT hybrid SLS. then Scenario A with user satisfaction.
on SRI SLS). User waiting time, as measured between the end of

A total of 12 subjects will be used, 3 in each of the above the first query and the appearance of the response.
conditions. After subjects complete the two scenarios, one Faster recognition has been shown to be more saus-
on each of the two systems, they will complete a debriefing fying [16] and may correlate with overall user sans-
questionnaire whose answers will be used in the data analy- faction.
sis.

User response time. as measured between the appear-
ance of the previous response and the push-to-talk

3.2. Measures for the next answer. This time may include the time
the user needs to formulate a question suitable for the

In this initial experiment, we will examine several measures system to answer as well as the time it takes the user
in an attempt to find those most appropriate for our goals. to assimilate the matenal displayed on the screen. In
One measure for commercial applications is the number of any case. user response time as defined here is dis-
units sold, or the number of dollars of profit Most develop- tinct from waiting time, and is a readily measurable
ment efforts, however, cannot wait that long to measure
success or progress. Further, to generalize to other condi- component of time to completon.
tions, we need to gain insight into why some systems might Recognition word error rate for each scenario. Pre-
be better than others. We therefore chose to build on experi- sumably higher accuracy will result in more user sat-
ments described in [12] and to investigate the relations isfaction. and these measures will also allow us toamong several measures, including: fatoadteemsrswllaoalwuso

make comparison with benchmark systems operating
"User satisfaction. Subjects will be asked to assess at different error rates.
their satisfPction "'!'" !'ctem (using a scale -f
1-5) with respect to the scenario solution they found, Frequency and type of diagnostic error messages.
the speed of the system, their ability to get the infor- Systems will typically display some kind of message
mation they wanted, the ease of learning to use the when it has failed to understand the subject. These
system, comparison with looking up information in a can be automatically logged and tabulated.
book, etc. There will also be some open-ended ques-
tions in the debriefing questionnaire to allow sub-
jects to provide feedback in areas we may not have 4. SUMMARY AND DISCUSSION
considered.

As pointed out by LTC Mettala in his remarks at this meet-
"Correctness of answer. Was the answer retrieved ing, we need to know more than the results of our current
from the database correct? This measure involves benchmark evaluauons. We need to know how changes in
examination of the response and assessment of cor- these benchmarks will change the suitability of a given
recmess. As with the annotation procedures [10], technology for a given application. We need to know how
some subjective judgment is involved, but these our benchmarks correlate with user satisfaction and user
decisions can be made fairly reliably (see (12] for a efficiency- In a sense, we need to evaluate our evaluation
discussion on interevaluator agreement using log file measures.

evaluation). A system with a higher percentage of
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At this writing, the MIT software has been transferred to uation. but in addition subjects could assess the speed of
SRI, and data collection is about to begin. We find that what system response, which the logfile proposal largely ignores.
began as an exercise in evaluation has become an exercise However, it would be more costly to transport the systems
in software sharing. We do not want to deny the importance and the panel of evaluators than to ship logfiles (although
of software sharing and its role in strengthening portability, most sites curremly bring demonstration systems to meet-
However, the difficulties involved (legal and other paper- ings).
work, acquisition of software and/or hardware, extensive
interaction between the two sites) are costly enough that we The logfile proposal could be modified to overcome its lim-
believe we should also consider mechanisms that achieve ited value in a ess.nent of timing (at some additional
our goals without requiring exchange of complete systems. expense) by the creation of a mechairsm that would play
Two such possibilities are described below, back the logfiles using a standard display mechanism and

based on the time stamps appeanng in the logfiles. This
Existing logfiles, including standard transcriptions, could would also open the possibility of having evaluators hear
be presented to a panel of evaluators for judgments of the the speech of the subject, rather than just seeing transcrip-
appropriateness of individual answers and of the interaction tions.
as a whole. In a sense, then, the evaluators would simulate
different users going through the same problem solving The costs involved for the use of such measures is negligi-
experience as the subject who generated the logfile. Cross- ble given the potential benefits. We propose these methods
site variability of subjects used for this procedure could be not as a replacement for the current measures. but rather as
somewhat controlled by specifying characteristics of these a complement to them and as a reality check on their func-
subjects (first time users, 2 hours of experience, daily com- tion in promoting technological progress.
puter user. etc.). This approach has several important Acknowledgment. We gratefully acknowledge support for
advantages: the work at SRI by DARPA through the Office of Naval

" It allows a much richer set of interactive strategies Research Contract N00014-90-C-0085 (SRI), and Research
than our current metrics can assess, which can spur Contract N00014-89-J-1332 (MIT). The Government has
research in the direction of the stated program goals. certain rights in this material. Any opinions, findings, and

conclusions or recommendations expressed in this material
" It provides an opportunity to assess and improve the are those of the authors and do not necessarily reflect the

correlation of our current metrics with measures that views of the government funding agencies. We also grate-
are closer to the views of consumers of the technol- fully acknowledge the efforts of David Goodine of MIT and

of Steven Tepper at SRI in the software transfer and instal -ogy, which should yield greater predictive power in lation. This research was supported by DARPA

matching a given technology to a given application.
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1. ABSTRACT Filled pauses can present problems for models of human
language understanding and automatic speech recognition.

Filled pauses in spontaneous speech present problems for models In the case of human perception, what is remarkable is the

of speech understanding and automatic speech recognition. A extent to which filled pauses are "filtered out" in compre-

potentially important cue to their recognition by both humans and hension. Those familiar with the task of transcribing spon-
machines is their typically low FO [9, 7]. Ile curent paper dis- taneous speech will note that filled pauses are often missed

cusses results of a study [10) which sought to determine whether in first passes at transcription laboratory experiments [e.g..

the F0 of filled pauses is relative to. or independent of. the F0 of 51 thave shown that listeners have difculty locating filled

surrounding lexical material. Clause-internal filled pauses and pauses when monitoring for sentence content. In the case

preceding peak F0 values for speakers of American and British of speech recognition. filled pauses are problematic in that

English were examined. Higher peaks were found to be systemati- they are often misrecognized as words having similar pho-

cally associated with higher filled-pause values within speakers, netic features. such as "a", "an' or "and." or as syllables of

supporting the "relative" hypothesis. In modeling this relationship longer words [1, 7.9].

it was found that a linear model, in which filled-pause F0 was One source of information that is likely to be important in
expressed as an invariant (over speakers) proportion of the dis- the successful perception and processing of spontaneous
mance between the preceding peak F0 and a speaker-dependent t- speech in general [see. for example,. 6) and speech contain-
minal low F0, produced results nearly identical to those of a two- ing filled pauses in particular. is prosody. Recent work has
parameter model in which the coefficients of peak and terminal contributed to our knowledge of the prosodic features of
low FO were allowed to vary freely. Analyses of additional vari- filled pauses. Studies of hesitations in a database of human-
ables showed the model to be less appropriate for filled pauses computer dialog [4. 111 show that filled pauses tend to
after sentence-initial peaks, but unaffected by temporal variables. occur in the lower region of a speaker's F0 range and have
These results suggest that clause-internal filled pauses, while a level or failing tone [7]. and, more specifically. that their
lower in FO than words in the message stream, nevertheless pre- FO is typically lower than that of both accented and unac-
serve information about the local prosodic context. Implications cented neighboring syllables [9].
for psycholinguistics, speech recognition. and linguistic theory are
discussed. For human perception. these findings may provide an

account for the apparent perceptual separation of filled
pauses from the message stream. The low FO of filled

2. INTRODUCTION pauses could aid automatic recognizers in distinguishing
filled pauses from real words. In addition. linguists may be

Phenomena exhibited in spontaneous speech present new concerned with how to best represent these predictably
challenges for researchers in psychology, speech technol- low-FO units in prosodic descriptions of spontaneous
ogy, and linguistics as the object of study shifts from care- speech.

fully prepared "laboratory speech" to natural conversation. A question relevant to each of these areas concerns the
An important difference between spontaneous speech and nature of the relationship between the low Fq of filled
speech that is read or rehearsed is that spontaneous speech pauses and the intonation of surrounding material. There
is characterized by relatively high rates of hesitation are three possible relationships: 1) filled pauses may be
pauses. repetitions and reformulations [3]. This paper produced at an absolute. speaker-specific FO value regard-
examines one of the most common types of hesitation phe- less of their position within the sentence: 2) the FO of filled
nomena: the filled pause. usually realized orthographically pauses may vary within speaker. but the variation may be
as "um-'" or"uh," unpredictable; or 3) the FO of filled pauses for a particular

speaker may be predictable at better than chance, given
knowledge about the prosodic context.
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A study previously reported in [10] investigated the rela- [111. The number of clause-internal filled pauses per
tionship between filled-pause FO and intonational context: speaker used in the analyses ranged from 2 to 13: 82 of the
the current paper discusses results of that study in further examples came from 12 speakers (6 male. 6 female) having
detail. Since the question of interest concerned prosodic 5 or more examples each.
context, the relevant filled pauses to examine would be
those that interrupt a prosodic p1arase. as opposed to those The second set consisted of 87 filled pauses taken from a
that initiate a speaker's turn or occur between intonation corpus of six dialogues recorded digitally at the Department
phrases. The task of choosing filled pauses that occur of Linguistics at the University of Edinburgh. Dialogues
within a prosodic phrase poses difficulties. however, in that: involved the second author and a colleague or acquaintance:
(1) it would be unclear how to label the data prosodically, they were natural, spontaneous conversations on various
since existing prosodic theories are not tailored to the topics, with no set task. The subjects were 3 male and 3
description of material surrounding hesitation phenomena: female speakers of British English. without strong regional
(2) it is not clear what level of prosodic structure would be accents, who were unaware of the purpose of recording the
appropriate to use as the relevant unit for "interruption;" (3) conversations. The number of clause-internal filled pauses
choosing filled pauses on the basis of the prosody of sur- per speaker used in the analyses ranged from 6 to 28.
rounding material is potentially circular in that hesitations
may themselves influence the prosody of that material. and
(4) prosodic labeling requires listening to utterances and is 3.2. Filled Pauses
time-onsuming. The goal of the study was to examine filled pauses that were

The scheme adopted was to study filled pauses that likely to interrupt a prosodic phrase; however, because it
occunrd within a syntactic clause. Filled pauses were con- would have been difficult and time-consuming to label the
sidered to be "within-clause" if lexical material preceding data sets prosodically in order to select the desired filled
the filled pause was syntactically incomplete, and strongly pauses, a method based largely on syntax was used. In gen-
predicted continuation of the utterance after the filled eral. the filled pauses selected for analysis were those that
pause. The value of the closest FO peak preceding the filled directly followed lexical material that would have been syr,-
pause was used as a measure of prosodic contexL and the tactically incomplete if the utterance had not continued after
initial FO value of the filled pause was used as a measure of the filled pause. It was felt that this would be an efficient.
filled-pause FO. straightforward, and easy-to-replicate method for capturing

many of the filled pauses that did interrupt prosodic phrases.
Within-clause filled pauses from speakers of American and while avoiding the complex and time-consuming task of
speakers of British English, in two different discourse con- prosodic labeling. Some examples from the American data
texts, were examined to evaluate the three alternative set are listed in Table I.
hypotheses. The "absolute" hypothesis predicted that filled
pauses would occur at a constant, speaker-dependent FO
value regardless of the value of the preceding peak FO. The
"random" hypothesis predicted that filled-pause FO values Table 1: Examples of Clause-Internal Filled Pauses
from a particular speaker would vary in a manner uncorre-
lated with preceding peak FO values. The "'relative" hypoth- "Looking
esis predicted some form of systematic relationship Incomplete for" Example
between the peak and corresponding filled-pause FO values.

NP N _the lowest [uh] fare...

VP (traL•s) NP ...book [uh] the flight..

3. METHOD PP NP ...leave at [um] noon...

AUX S Does tuh] Delta fly...

3.1. Subjects

Two quite different sets of data were analyzed. The first was The researchers tried to determine whether or not a listener
a set of 120 clause-internal filled pauses from digitized would feel it was possible that the speaker could have ended
utterances from 29 speakers (14 male. 15 female) of Ameri- an utterance before the filled pause. based on a transcription
can English making air travel plans by speaking to a corn- alone, but taking semantic and pragmatic information into
puter. The multi-site database is described in detail in (4]. account. For example, filled pauses in utterances such as:
The majority of examples came from "'Wizard-of-Oz" sys-
tems, in which a human interpreted and responded to Show me flights flying [uhi from Boston.
requests and thus "recognition" was perfect: a small num-
ber came from interaction with a Spoken Language System
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in which material before the filled pause is not necessarily distribution of terminal low FO values. Therefore. terminal
syntactically incomplete, but which would seem incomplete low F0 values were obtained for all utterances for a particu-
to a listener given the discourse context, were included in lar speaker that contained a terminal fall. The lowest of
the analyses. these values was then used as the estimate of the speaker's

terminal low F0 for all speech tokens from that speaker in
Conversely, some utterances which could be viewed as the analyses. Care was taken to assure that the lowest termi-
meeting the syntactic expectancy requirement were not nal .0 value did not appear to be an outlier when compared
included in the analyses. These were cases in which the with the other terminal FO values obtained for the same
only item preceding the filled pause in the same clause was speaker
a conjunction such as "and" or "buL," a lexical filler such as
"well" or "okay." or another filled pause. Such cases were Four measures of duraion were recorded, including the
excluded because of the higher likelihood of a prosodic duration of the filled pause. that of preceding and following
boundary immediately preceding the filled pause. silent hesitation pauses (if any). and that of 'he time (and

also the number of syllables) between the preceding peak
and the beginning of the filled pause.

3.3. Apparatus Values for additional variables of interest were also

The digitized waveforms were sampled at 8 or 16 kHz and recorded, including the sex of the speaker. whether or not
all waveforms and pitch tracks were examined using the the filled pause preceded a repetition. repair. or fresh start.
Entropic ESPS/Waves+ software on a Sun 4 workstation. whether or not the preceding peak was marked on a sen-

ten,•.e-initial accent, and whether the filled pause was "um"
or "uhl"

3.4. Procedure

The American and British data were coded independently
by the first and second authors, respectively. For each
within-clause filled pause having reliable pitch tracks. the 4. RESULTS
researcher recorded five F0 values, four measures of dura-
tion. and values for four additional variables. Figures 1-4 show data for a male or female speaker from

each of the data sets (American and British). Time-normal-
The F0 of each filled pause was measured at both the begin- ized F0 values are shown for the preceding peak F0, initialning and end of the filled pause. These values describe the filled-pause F0. final Miled-pause FO. and ¢,•llowing peak FO
FO of filled pauses well. since most fall fairly linearly. Anal- in multiple examples of filled pauses for the particular
yses in the present work used the initial filled-pause FO as a speaker. Each speaker s estimated terminal low FO is also
measure of filled-pause FO. F0 was also recorded at the F0 indicated
peaks most closely preceding and following the filled
pause: results reported here used only the preceding peak as
a measure of prosodic context. Alternative measures of 4.1. Testing the Hypotheses: Sign Test
context (for example topline. or preceding low accents)
could also be used. but could be more difficult to measure The first thing to note about the plots is that, in general, the
and locate than F0 peaks. Peak values were restricted to drop to the filled pause from the preceding peak scales with
occur on words within the clause containing the filled the peak values, so that higher peaks tend to have higher
pause. In most cases, the peak was marked on a syllable following filled pauses. This sunple assumption was tested
perceived to be accented: in a few cases no accented sylla- using data from all 35 speakers. The highest and lowest pre-
ble was available and the highest preceding F0 value was ceding peak FO values over all examples from a particular
used. speaker were extracted and the associated filled pause val-

ues compared in a Sign test. In 34135 cases, the higher pre-A fifth F0 value, which will be referred to as the "terminal ceding peak value was associated with a higher filled pause
low FO." was measured after final lowering in a manner value. p < .0001. This highly significant result is consistent
similar to that described in [2]; i.e. for utterances containing with the relative hypothesis and inconsistent with the abso-
a terminal fall. FO was measured at the lowest point in the lute and random hypotheses.
fall, disregarding regions associated with errors in pitch
tracking or vocal fry. The purpose of this measure was to
provide a single, stable, speaker-dependent FO value for 4.2. Modeling the Relationship
each speaker. The underlying assumption in the present
work was that this value should correspond to a speaker's A second observation about Figs. 1-4 is that the. e appears to
lowest possible F0. as opposed to the lowest F0 realized in be a lower bound of FO: filled pauses de' ,, seem to go
any particular utterance, since the former would be the below the terminal F0. This suggests that fllle,-1pause F0
more stable value given the inherently positively skewed cannot be expressed a% a simple subtractive function of
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peak FO. A third observation is that there seems to be a Based on these observations, we proposed a simple linear
compressive effect for pra.s closer to the terminal F0, with model, in which filled-pause F0 (F0 fp) is the FO value
iower peaks producing less of a drop to the filled pause than occurring at a fixed proportion of the distance between the
higher ones. This observation suggests that filled-pause FO peak F0 (FO peak) and the terminal Iow F0 (F0 mim):
cannot be expressed as a simple multiplicative function of
peak FO. since such a function would predict parallel Fo rp = r (F0 peak - F 0 min) + FO min
curves. Exceptions to this trend are the filled pauses follow-
mg the very highest peak examples in Figs. 1, 2. and 4. This is a single-parameter model, since the coefficients of
which do not drop as far as expected. However, these exam- peak F0 and terminal low F0 are both determined by r.
ples form a spec.al class; they correspond to filled pauses We determined the value of r empirically for each filled
!ollowing peaks marked on sentence-initial accented sylla- pause token from the set of American and Bntish speakers
bles which. as discussed later. appear to behave differently with five or more examples each (18 subjects. 169 filled
"from other clause-internal filled pauses.
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pauses.) Means for tokens broken down by Anerican/Bnt- those cotained using the o01 servecl !er::Inai ovA v.ames.
ish -and male/female are shown in Table 2. however, to be meaningrul such analyses require ntcre data

per speaxer. Nevertheless, analyses performed foi a suoset
(N=0) of the 18 subjects who had the .argest nmibert. of
examples revealed that in each case the optnai remerence

Table 2: Values of r FO was nugher than the observed terminal low F0. Theretore
S c1 .a number of modifications of the observed values i the 18-

of I *of Mean sd. or speaker data set were computed. For each modticaton,S SubjectI
speakers tokens r r was recetermined using the new terminal low values, and

..e..an filled pauses were predicted using the new, overail average
Amencan and new low FO values. It was founr that thc minimum

maie 6 39 596 .214 standard error (15,16 Hz. as opposed io I5.4 Hz for the
female 6 43 .626 .158 onginai temunal low values) was produced when observed

....... terminai low values were increased by roughly :2:%Britsh

male 3 55 607 .240
female 3 32 636 .242 i 4.4. Effect of Duration

Because results for the Amencan and British data were There was no correiation between the tnie or the number of
remarkably similar, data were pooled for all further anaily- syllables from the peak to the filled pause and ;he drop size
ses. Although the value of r appears to be slightly higher for As shown in Figure 5. the drop in FO from :ne orecedlmn
women in both groups. the differences are nonsignificant peak to the filled pause did not seenn :o depend on the
(as can be seen by comparing them to the magnitude of the amount of tme elapsed between these -two points
standard deviations.)

A linear regression with the constant term suppressed. per-
formed using the raw data from subjects represented in
Table 2, and using the mean r determined over the enure set
(0.62), yielded a standard error m prediction of 15.41 Hz. A
comparison of this model to two other linear models is -

shown in Table 3. Investigauon of higher-order mi'ndes was 90 "
not warranted given the lack of evidence for a nonlinear_ -
reiationship, and the potential danger of over-fitting the
small data set at hand. The proposed model was clearly bet- 70 - _

ter than one in which only the peak was used to predict the " • !
filled pause FO. It was also remarkably close in prediction ,. *
accuracy to results produced by a two-parameter model 5 .
wnich allowed the coefficients of peak and terminal low FO - , .- • _',__

to vary freely 30 - "
*. *., :.f a

Table 3: Compaanson of Models _ ? .. , ,

V bltof RMSerror 0 "Variables I
Parameters (Hz) -10 "

Feak. terminal low FO 15.41 0.00 0.50 1.00 1.50 2.00
Time from Peak to Filled Pause (seconds)

Peak I 1ri.58

pe-ak. terminal low FO 2 15.25 Figure 5: Effect of Time from Peak on F0 Drop

4.3. Optimal Reference FO In add:ion. there did not seem to be any reiationshim

between the duration of the filled pause 'tseif and the size ofAn issue addressed was whether, given the proposed model. the fall nn FO over the course of the filled' pause. as shown in
the estimated terminal low F0 values used corresponded to Figure t
,he optimal reference FO values for prediction Ideally.
regressions solving for the optimal r and constant for each
speaker would allow for comparison of these results to
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As can be seenm the factor most influencing predicton accu-
. 45 , -i-----r racy was whether or not the preceding peak was marked on

.. ... 1 a sentence-rintial accented syllable. Although conclusions
, 35 _____!" Icannot be drawn given the small numnber of tokens of this35 .

type. it is worth noting that the error in prediction was
C -,always in the same directton, with the actual filled pause

.25 occurnng at a higher FO value than predicted by the model.-
i -" j. _ Tokens not involving disfluencies had a lower standard

•", - . .error than that observed overall;, however, results for the.. , •eL " t- different types of disfluencies were inconclusive due to
-,: • . - small sample size. Prediction error was not affected by

_ ___ j.... *.., . .•-whether the filled pause was "unm" or "uh" (althou&h "urn"
S. ., I tokens were significantly longer in duration than "'uh"

•. 0 Itokens, and it should be borne in mind that the present
2L 1....."4. model predicted only the initial FO of the filled pause.) Pre-
=, • [1. diction accuracy was also not affected by the sex of the

. - ispeaker: that females had a higher standard error than males
- .15 - was expected given the roughly 50% higher terminal low

100 200 300 400 500 600 700 800 FO values for the females.

Duration of Filled Pause (milliseconds)

Figure 6: Effect of Filled-Pause Duration on Filled-Pause
Fall 5. DISCUSSION

4.5. Effect of Additional Variables 5.1. Evaluation of Hypotheses

Results of regressions performed using the observed termi- Two different sets of spontaneous speech data were exam-
nal low FO values and selecting independently for values of ined to explore the relationship between the F0 of clause-
additional variables are shown in Table 4 internal filled pauses and their surrounding context. Results

show that the initial FO of clause-internal filled pauses
scales with the FO of preceding peaks, strongly suppotung
the "relative" hypothesis.

Table 4: Effect of Additional Variables

RMS 5.2. Modeling the relationship
Data in Analysis error of

(Hz) tokens Inspection of data from individual subjects revealed that in
addition to the scaling of filled pause FO with preceding

all dam 15.41 169 peak FO. there was also a lower bound of filled-pause F0
values, and a compressive effect on the size of the drop

male speaker 12.36 0from the preceding peak to the filled pause as peaks

female speaker 18.42 75 approached the lower portion of a speaker's range.

a30-30 A model of filled-pause FO was proposed to reflect thesepeak__onsentence-_initialaccent_ 26 observations, The model was not necessariy intended to

peak not on sentence-initial accent 10.90 143 have any theoretical interpretation. but rather simply to pre-
dict the value of filled-pause F0 using other accessible val-

no other disftuency present 14.36 141 ues of F0. Filled-pause F0 was expressed as a function of
filled pause precedes repetition 23.90 11 three values: (1) a speaker-dependent fixed terminal low F0

,__iled __usepredese________ .9 __________ _ lvalue (representing the speaker): (2) the value of the pre-

filled pause precedes replacement 13.09 7 ceding peak FO (representing the particular prosodic con-
text): and (3) a fixed. speaker-independent scaling factor, r

filled pause precedes fresh start 17.90 9 (to express the relationship between the two previous values
and filled-pause F0). This is an extremely constrained

Sfilled pause is "urn" 15.29 86 model. with only one free parameter (r). In addition. the

filled pause is. 15.20 3 constant term in the model corresponds to a speaker's
filled__pause _____"__h"_ 15_20__ empirically measured terminal low FO. as opposed to some
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FO value unrelated to prosodic phenomena (for example tions) was made because the aim was to get a stable esti-
one outside the speaker's range). Clearly, the current model mate for each speaker. given a positively skewed
could also be rewritten to be expressed using coordinates distribution of low FO values. Using values such as the
related to a different model (for example. a declination mean would therefore be inappropriate. That is. by using
model). the present model is at least as parsimonious as any mean low FO. one cannot improve results in a principled
alternative model in which the functions rewriting peak and way. whereas by using a stable estimate such as minimum
terminal low FO in terms of other variables are linear, low F0 (assuming however that there are enough observa-

tions available to adequately estimate this value), one can
One certainly cannot draw conclusions about the appropri- examine the relationship between minimum low FO and the
ateness of models based on examination of the limited set FO that optimizes prediction. For exploratory purposes.
of data used in the present study. Nevertheless, it is impres- however, an analysis using mean low F0 values was per-
sive how well the proposed model was able to predict the formed post hoc on the present data set. Results showed a
data. Of possible linear models (there was no evidence for a marked reduction in prediction accuracy. and a distribution
nonlinear relationship when data from individual subjects of r values with much higher standard deviations. Neverthe-
were examined) the present model performed extremely less. it is conceivable that an analysis using mean low F0
well, producing results only very slightly less accurate than values on a different set of data could produce better results
a linear model with an additional parameter (in which the than an analysis using minimum FO values: such a result
coefficients of peak and terminal low FO were allowed to would not be meaningful, however, but would rather be due
vary freely.) Real evidence in support of a model such as to the fact that mean low FO. like optimal reference FO. is
the present one. however, will probably have to come from higher than minimum low FO.
comparison of r in the present model to scaling factors pro-
posed in studies of other prosodic phenomena. for example
low-tone scaling or the scaling of parentheticals. 5.5. Effect of Duration

5.3. Results also suggest that the intonation of filled pauses may
be independent of temporal variables. As shown in Fig. 5.
there was no correlation between the size of the drop in FO

It was found that the average value of the parameter r, from the preceding peak to the filled pause and the distance
which expresses the proportion of the distance from termi- (in time or syllables) between these points. i.e. filled-pause
nal low FO to peak F0 at which filled-pause FO occurs. did FO was unrelated to whether or not words and/or silent
not differ across the American and British data sets. This pauses intervened between the preceding peak and the flled
suggests that the intonation of clause-inteinal filled pauses. pause. Also. rather surprisingly. there was no correlation
at least as measured by the relationship between preceding between the duration of the filled pause and how far in FO it
peak FO and initial filled-pause FO. may be independent of fell. as shown in Fig. 6. Most clause-internal filled pauses
factors such as dialect and discourse setting. Mean r values have a slight linear fall: the fact that longer filled pauses do
also did not differ across sex. Since speaker sex is highly not fail to a lower F0 than shorter filled pauses implies that
correlated with the terminal low FO. this lack of a difference the longer tokens either start out with a shallower falling
in r between sexes is consistent with the appropriateness of slope, or that they level off in FO once they reach a point
a Linear model. that is "too low" for the local prosodic range. It is also pos-

sible that for long hesitations. speakers may stop the filled
pause completely and use a silent pause when they have

5.4. Optimal Reference FO dropped too far. Future work wal attempt to examine these
issues more closely. These results add further support to the

The value of terminal low FO, a speaker-dependent variable notion that clause-internal filled pauses are in some sense
corresponding to the lowest observed FO value produced "well-formed" since the range of FO values for a filled
after a terminal fall, was found to be slightly lower than the pause is determined by the local prosodic context. In addi-
value which optimized prediction. The overall standard tion. these findings suggest that prosodic regularities in
error over the data set was slightly decreased when the filled pauses may be found more in FO than in duration mea-
value of terminal low FO was raised by 10% for each sure.s this possibility seems reasonable because hesitations.
speaker. A larger data set. with more tokens per speaker. is by definition, interrupt the temporal course of production.
needed in order to further investigate this finding; it sug-
gests, however, that the value used to scale pitch over the
course of an utterance is higher than the F0 measured after 5.6. Effect of Sentence-Initial Peaks
final lowering. This is consistent with proposals in the liter-
ature [e.g., 81. although it does not distinguish between a As shown in Table 4, prediction error of the proposed model
declination model and one in which F0 falls abruptly at the was much greater for filled pauses following peaks marked
end of an utterance. It should be noted that the decision to on sentence-initial accents dIan for filled pauses elsewhere.
use the lowest observed terminal low FO, as opposed to In each case following a sentence-initial peak, the predic-
other possible values (for example. the mean of all observa- tion of the model for filled-pause F0 was lower than the
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observed value: when this relatively small set of tokens was filled pauses; in addition the recognition of filled pauses
removed from the analyses. the overall error in prediction having these different prosodic characteristics could con-
was reduced substantially. This finding is consistent with tribute information about sentence structure for natural Ian-
the notion that the FO of filled pauses preserves information guage processing.
about the current prosodic context: filled pauses after peaks As linguists move from the study of read or rehearsed
corresponding to extra-high sentence-initial accents are
themselves extra-high. speech to spontaneous discourse. it should become increas-

ingly important for them to consider the prosody of disflu-
encies. since as shown in the present study, some

5.7. Implications for Areas of Research phenomena considered to be disfluent may exhibit prosodic
regularities. This work also suggests that in the case of

The finding that the FO of filled pauses is relative to pro- clause-internal filled pauses. FO. rather than duration. may
sodic context has implications for models of human speech be the most important prosodic feature to explore. It should
perception. automatic speech recognition. and for theoreti- prove useful for linguists to include methods for annotating
cal and descriptive studies of prosody. disfluencies in systems developed for the prosodic labeling

of spontaneous speech.
The low FO of filled pauses may help explain why listeners
have trouble locating them with respect to words in the
message stream; low FO may also contribute to listeners' 6. CONCLUSION
ability to filter out filled pauses in comprehension. Experi-
ments designed to test these hypotheses, by using resynthe- This work has shown that the FO of one type of speech dis-
sis to "lift" filled pauses up to the F0 of the region of the fluency, the clause-internal filled pause. is related to the
lexical material in an utterance, will be conducted in fture intonation of surrounding material in the message stream.
work. These tests predict that raising the F0 of filled pauses Further work in this area could enhance our knowledge of
will facilitate listeners' ability to locate them. and also pos- the production and processing of spontaneous speech. help
sibly impair comprehension. The finding that the F0 of us learn how to apply these findings to aid speech recogni-
filled pauses is relative to prosodic context suggests that tion. and encourage the consideration of hesitations and
speakers may attempt to preserve the current prosodic range other disfluencies in theoretical and descriptive work on
when hesitating, possibly to inform the listener that they prosody.
intend to continue where they left off, rather than to aban-
don a portion of the utterance preceding the filled pause.
Thus. a question to be pursued in further work is whether
there is a difference between filled pauses that interrupt oth- ACKNOWLEDGMENTS
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can be measured in a number of ways, in this paper, we
focus on (1) self-reports of user satisfaction, and (2) recog-

ABSTRACT nition performance. Further studies could include addi-
tional measures.

We have analyzed three factors affecting user satisfaction
and system performance using an SLS implemented in the SRI has been collecting data in the air travel planning
ATIS domain. We have found that: (1) trade-offs between domain using a number of different systems (see Bly et al.
speed and accuracy have different implications for user sat- [1]; Kowtko and Price [5]). In moving from wizard-based

data collection to the use of SRI's SLS, we observedisfaction; (2) recognition performance improves over time, changes in user behavior that were associated with system
at least n .r~art bec~ause of a reduction in sentence perplex- errors. Some of these behaviors were adaptive; for exam-
ity; and '.3) hyperarticulation increases recognition errors, pie, learning to avoid out-of-vocabulary words or unusual
and while instructions can reduce this behavior, they do not syntax should facilitate successful interaction. Other
result in improved recognition performance. We conclude behaviors, however, were non-adaptive and could actually
that while users may adapt to some aspects of an SLS, cer- impede the interaction. For example, speaking more loudly
tam types of user behavior may require technological solu- or in a hyperarticulate style may be detrimental to system
tions. performance insofar as these styles differ from those

observed in training material dominated by wizard-medi-
ated data in which system errors are minimal.

1. INTRODUCTION It is difficult to predict how well an SLS will need to per-
form in order to be acceptable to users. Both speed and

Data collection is a critical component of the DARPA Spo- accuracy are crucial to system acceptability; we have there-
ken Language Systems (SLS) program. Data are crucial not fore collected data using versions of the system that prior-
only for system training, development and evaluation, but tize one of these parameters at the expense of the other. The
also for analyses that can provide insight to guide future present study first addresses the issue of user satisfaction
research and development. By observing users interacting with different levels of system speed and accuracy and then
with an SLS under different conditions, we can assess focuses on an example of an adaptive behavior and another
which issues may best be addressed by human factors and that is maladaptive. These behaviors represent a subset of
which will require technological solutions. System devel- potential factors influencing human-machine interaction.
opers can benefit from considering not only initial use of an Because these issues are not restricted to any particular sys-
SLS, but also the experience of a user over time. tem, they should be of general interest to developers of

Systems based on current technology work best when SLS technology.
speech and language closely resemble the training data In the first study, we compared three points in the speed-
used to develop the system. However, there is considerable accuracy space for this application: (1) an extremely slow
vanability in the degree to which the speech and language but very accurate wizard-mediated system (described in
of new users match that of the training data. The current Bly et al. [1]) with a 2-3 minute response time and a mini-
paper examines the importance of this initial match. It is mal error rate; (2) a software version of the DECIPHER
possible that users whose speech does not conform to the recognizer with a response time of several times real time
system may be able to adapt their behavior over time (e.g., and a fairly low word error rate; and (3) a version of the
Stem and Rudnicky [11]). In order to evaluate technology DECIPHER recognizer implemented in special-purpose
in terms of the demands of the application, we need to hardware using older word models, which has a very fast
understand the extent and the nature of such adaptation and response time but currently has a higher word error rate.
the conditions that affect it. Although system performance
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We compared user satisfaction based on responses to a component are described in Jackson et al. [41. Some sub-
post-session questionnaire. jects used the real-time hardware version of the DECIPHER

system (Murveit and Weintraub [8]; Weintraub et al. [12]);
The second study investigated the effect of user experience others used the software version of the system. which was a
on syntax and word choice. We hypothesized that one way modified version of SRI's benchmark system (as described
users might adapt would be to conform to the language in the references above) tuned using the pruning threshold
models constraining recognition. We therefore measured to improve speed at the cost of introducing a small number
recognition performance in subjects' first and second sce- of recognition errors.
nanos, and compared sentence perplexities in order to
determine whether any changes in recognition performance SRI's SLS technology was implemented in the air travel
could be attributed to a change in perplexity. planning domain, a domain with which many people are

familiar (see Price [10]). The underlying database was a
The third study examined the effect of hyperarticulate relational version of an 11 -city subset of the Official Airline
speech on recognition and tested whether instructions to Guide. Two DARPA/NIST standard microphones were
users could reduce this potentially maladaptive behavior, used: the Sennheiser HMD-410 close-talking microphone
We coded each utterance for hyperarticulation and com- and the Crown PCC-160 table-top microphone. Most data
pared recognizer performance for normal and hyperarticu- were collected with two channels; some of the early data
late utterances. We also compared rates of hyperarticulation were collected using only the Sennheiser microphone.
for subjects who were either given or not given the instruc- When both microphones were used. recognition was based
tions. on the Sennheiser input.

The interface presented the user with a screen showing a
2. DATA COLLECTION METHODS large button labeled "Click Here to Talk" A mouse click on

this button caused the system to capture speech starting a
half second before the click; the system automatically deter-

2.1. Subjects mined when the speaker finished speaking based on silence
duration set at a threshold of two seconds. The user could

Data from a total of 145 subjects were included in the anal- move to the context of previous questions via mouse clicks.
yses. Subsets of these data were chosen for inclusion in Once the speech was processed, the screen displayed the
each analysis in order to counterbalance for gender and sce- recognized string of words, a "paraphrase" of the system's
nario. The majority of subjects were SRI employees understanding of the request, and. where appropnate, a for-
recruited from an advertisement in an internal newsletter; a matted table of data containing the answer to the query. In
small number were students from a nearby university, cases where the natural language component could not
employees in a local research corporation, or members of a arrive at a reasonable answer, a message window appeared
vclunteer organization. Subjects were native speakers of displaying one of a small number of error messages. A log
English, ranged in age from 22 to 71 and had varying file was automatically created, containing time-stamps
degrees of experience with travel planning and computers. marking each action by the user and by the system.

2.2. Materials 2.4. Procedure

Fcur different travel-planning scenarios were used. One Subjects were seated in a quiet room in front of a color
e.:ailed arranging flights to two cities in three days; a sec- monitor, and had use of a mouse and nucrophone(s) but no
or.d entailed finding two fares for the price of a first class keyboard. They were given a short demonstration on how to
fa.e; a third required coordinating the arrival times of three use the system. Some of the subjects were given additional
fl:_zhts from different cities; and a fourth involved weighing instructions explaining that, while they might have a ten-
faz:ors such as fares and meals in order to choose between dency to enunciate more clearly in the face of recognition
two flight times. Because the task demands of the scenarios errors, they should try to speak naturally, since the system
were different, we controlled for scenario in the analyses. was not trained on overenunciated or separated speech.

Once subjects were comfortable with the system, they were
left alone in the room while they solved travel planning sce-

2-3. Apparatus narios. After they finished as many scenarios as possible
within an hour, they were asked to fill out a questionnaire

"The data were collected using two versions of SRI's SLS and were given a choice of gift certificate for use at a local
(vith no human in the loop); the first study also included bookstore or a contribution to a charitable institution.
d?_a collected in a Wizard of Oz setting (Bly et al. [1]). The
basic characteristics of the DECIPHER speech recognition
ccrnponent are described in Murveit et al.[7,9], and the
basic characteristics of the natural language understanding
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3. EXPERIMENTS wizard-system users gave "Yes" responses, a sigmficant dif-
ference from the hardware result, X2 (df=4) = 35.6. p < .001.
Although hardware users were pleased with the speed of the

3.1. The Effects of Speed and Accuracy Trade- system; they were less likely than wizard system and soft-
offs on User Satisfaction ware users to say they focused their attention on solving the

problem rather than on trying to make the system under-
Since in general, speech understanding systems can trade stand them (33.3% as compared with 61.4% and 56.5%,
accuracy for speed, we first assessed how these parameters respectively), a marginally significant effect, X2 (df=4) =

might affect user behavior and acceptance of the system. 7.8, p <. 10.
The software version of the recognizer was slower than the On several other measures users found the wizard-based
hardware version (2.5 compared to 0.42 times the utterance system preferable to either the software or the hardware.
duration), but was substantially more accurate (with a word More wizard-system users said that the system usually
error rate of 16.1% a.- compared with 24.8% on the same understood them the first time (47.8% as compared with
sound files). 13.0% and 8.7% for the software and hardware users,

respectively), X2(df=4) = 22.5, p < .001. Overall, the wizard
system users were more likely to say the system could be

0 100 Wizard easily used by a person who was unfamiliar with computers

C L Software (78% compared with 43.5% and 35.6% for the software and
o 80 i] Hardware hardware, respectively) X2 (df=4) = 20.5, p < .001. How-

7. ever, in terms of general satisfaction, as expressed in
whether the subjects said they would prefer using the sys-

60 tem to looking the information up in a book, there was no
.significant difference between the groups, with 52.3%,

60.9% and 55.6% "Yes" answers for the three groups40 respectively.

) /Because the hardware system was least satisfying to users
0 20 in terms of recognition accuracy, we concluded that the
. l/ hardware would provide the greatest potential for user adap-

o **/ tation to the system. For this reason, we used the hardware0uesto Questo Quesion n s 5 system to collect data on the effects of user experience andinstructions regarding hyperarticulation.

i. Were the answers provided quickly enough? 3.2. Effect of User Experience on Recognition

2. Did the system understand your requests the first time?

3 User experience was evaluated in a within-subjects design,t fhcused most of my attention on solving the problems. counterbalanced for scenario, that compared 24 users' first
rather than trying to make the system understand me. and second sessions. As a global measure of adaptation, we

4. Do you think a person unfamiliar with computers could looked at how long it took subjects to complete their two

use the system easily? scenarios. Although subjects were not told to solve the sce-
narios as quickly as possible, they nevertheless took less

5. Would you prefer this method to looking up the informa- time (10.5 compared to 13.0 minutes) to complete their sec-
tion in a book? ond scenarios, F(0,23) = 5.78, p < .05. This difference was

partially but not completely attributable to a lower number
Figure 1: User Satisfaction of total utterances in the second scenario.

The users also elicited fewer recognition errors in the sec-
To assess user satisfaction, we compared questionnaire ond scenario. The mean word error rate was 20.4% for the
responsess user 46satisction, whousedhe o arde , quesion r first scenario but fell to 16.1% for the second, F(1,22) =
responses for 46 subjects who used the h warer 23 who 5.60, p < .05. However, not all users decreased their recog-
used the software, and 46 who used the earlier wizard- nition error rate. There was a significant interaction between
mediated system. Mean responses are shown in Figure 1. cI initial error rate and change in error rate from the first sce-
general, user satisfaction wth the speed of the system cor- nario to the second, F(1,22) = 10.98, p < .01. Subjects who
related with the response time of the system they used; had recognition error rates of 20% or worse in the first sce-
when asked. "Were the answers provided quickly enough?" nario (N=1 1) tended to improve recugnition performance,
69.6% of the hardware users responded "Yes." In contrast, while subjects who had better initial performance (N=l 3)
only 34.8% of the software users and a mere 11.1% of the did not (Figure 2). Subjects with initial error rates of 20% or
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higher went from an average of 31.3% errors down to 35
19.6%, while subjects with initially lower error rates ,.,
showed no statistically significant change. For those sub- 0 High Initial Error
jects who did improve recognition performance, the O Low Initial Error

5&.30LoIntaErrimprovement could only be due to user adaptation, since
the same SLS version was used for both scenarios.

CL 25

50"
SHigh Initial Error 2 20

O40 - Low Initial Error 0)

B30
0 10 1

Scenario 1 Scenario 2
S20

Figure 3: Median perplexity over time.
IL 10

In addition to decreasing perplexity, subjects who had initial
error rates of greater than 20% also tended to decrease the

0 A use of out-of-vocabulary words in the second scenario,
Scenario 1 Scenario 2 whereas subjects who had lower error rates did not, a sigrif-

icant interaction, F(1,22) = 6.10, p < .05. Overall, however,
the use of out-of-vocabulary words was rare.

Figure 2: Recognition accuracy over time. These findings indicate that at least to some degree, subjects
adapted to the language models of the system and, in doing

The improvement in recognition may be due in part to user so, managed to improve the recognizer's performance.
adaptation to the language models used. As a measure of Quite possibly, subjects were finding ways to phrase their
deviation from the system's language models, we used test- queries that produced successful answers, and then repro-
set perplexity, which was based on the bigram probabilities ducing these phrases in subsequent queries. In future work,
of the observed word sequences. As would be expected, further analyses (for example, looking at dialogue) will
there was a significant, positive average correlation address this issue in greater detail.
between utterance word error and perplexity: mean r = .28,
t = 4.55, p < .001. Thus, one way for subjects to improve
recognition accuracy would be to change their language to 3.3. Effect of Instructions on Speech Style
conform to that of the system model. Perplexity may there-
fore play a role in the decrease in recognition error rates Another potential source of recognition errors arises when
observed over time for those subjects who had an error rate the speech of the user deviates from the acoustic models of
of 20% or worse in their first scenario. For this group of the system. Since the vast majority of the data used to train
subjects, there was a tendency to produce queries with the DECIPHER recognizer came from wizard-mediated
lower sentence perplexity in the second scenario (Figure 3). data collection [6], where recognition performance was
Using the median as a measure of central tendency (a more nearly perfect, examples of "frustrated" speech were rare. In
stable measure due to the inherent positive skew of perplex- human-human interaction, when an addressee (such as a
ity), we found that the average median sentence perplexity foreigner) has difficulty understanding, speakers change
was 25.3 for the first scenario and 19.4 for the second, a their speech style to enunciate more clearly than usual (Fei-
reliable difference, F(1,10) = 7.44, p < .05. guson [3]). We suspected that a similar effect might occur

for people speaking to a machine that displayed feedback
showing less than perfect understanding. We noticed that.
when using an SLS as opposed to a wizard-mediated sys-
tem, subjects tended to hyperarticulate: releasing stops.
emphasizing iaitial word segments, pausing between words,
and increasing vocal effort.
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Although hyperarticulation is a multifaceted behavior, it indicative of subtle speech style differences between the
was nevertheless possible to make global judgments about two groups not captured by the coding of hyper ý:ulation.
individual utterances. Hyperarticulation was coded for each
utterance on a three-point scale by listening to the utter-
ances. Utterances were coded as (1) clearly natural sound- 4. CONCLUSION
ing, (2) strongly hyperarticulated, or (3) somewhat
hyperarticulated. The coding was done blindly without ref- Application development can benefit from analyses of fac-
erence to session context or system performance. tors affecting system performance and user satisfaction. We
Using a within-subjects design, so that any differences in have presented examples of ways in which the behavior and
recognition performance could be attributed to a change in satisfaction of subjects interacting with an SLS may be
speech style, rather than speaker effects, we analyzed the affected. We have described ways in which parameters of
speech style of 24 subjects' first scenarios (future analyses the system itself, such as speed and accuracy, affect differ-
will also examine repeat scenarios). These subjects (of ent aspects of user satisfaction. We have examined the
whom 20 were also included in the previous analysis of effect of user experience on recognition performance and
user experience) all used the hardware system. The subjects found a decrease in word error rate over repeated scenarios.
averaged about 10 natural sounding, 4 somewhat hyperar- Adaptation was relatively greater for those subjects who
ticulate, and 5 strongly hyperaruculate utterances each. For had more than 20% errors on the first scenario. The
the 13 subjects who had at least three natural and three decrease in errors could be attributed at least in part to a
strongly hyperarticulated utterances, we compared recogni- decrease in sentence perplexity and to a reduction in the use
tion performance within subjects and found that the of out-of-vocabulary words. We have also shown a signifi-
strongly hyperarticulate utterances resulted in higher word cant relationship between word error rates and hyperarticu-
error rates, F(1,12) = 5.19, p < .05. lation, a speech style that occurs relatively frequently with

an imperfect recognizer. We have shown that instructions
Hyperarticulation was reduced, however, by giving users not to hyperarticulate reduced this maladaptive speech
instructions not to "overenunciate" and by explaining that style, but that instructions did not result in improved recog-
the system was trained on "normal" speech. We calculated a nition performance overall.
hyperarticulation score for each subject by weighting
"strongly hyperarticulated" utterances as 1, "somewhat Our studies have shown that along some dimensionst
hyperarticulated" utterances as 0.5, and "nonhyperarticu- humans are flexible and can adapt in ways that improve sys-
lated" utterances as 0, and taking the mean weight across all tem performance. However, hyperarticulation may be a
utterances in the scenario. The 12 subjects who heard the maladaptive behavior for which a technological solution
instructions (the "instruction group") had lower mean should be investigated. In particular we have found that
hyperarticulation scores, 0.22 as compared with 0.60 for the strategies people use to try to improve normal human com-
12 subjects who received no special instructions (the "no munication (e.g., hyperarticulation) can have the reverse
instruction group"), a significant difference F(1,22) = 11.97, effect in the context of our current models. While hyperar-
p <.01. ticulation is an "exaggerated" speech style that might

improve comprehension for humans, it can cause poor rec-
Given that the instruction group had significantly fewer ognition for automatic systems in which "exaggeration" is
hyperarticulated utterances, and given that hyperarticula- not adequately modeled.
tion is associated with lower recognition accuracy, we
would expect the instruction group to have better recogni-
tion performance overall. However, although the trend was Acknowledgments
in that direction (18.1% word error for the instruction group
versus 22.5% for the no-instruction group), the difference We gratefully acknowledge support for this work from
was not reliable. One possible explanation is a lack of DARPA through the Office of Naval Research contract
power in the analysis, as a result of the small number of N00014-90-C-0085. The government has certain rights in
subjects and large individual differences in error rates. A this material. Any opinions, findings, and conclusions or
second, not necessarily conflicting explanation is that the recommendations expressed in this material are those of the
subjects given the instructions to "speak naturally" used authors and do not necessarily reflect the views of the gov-
somewhat less planned and less formal speech. We noticed eminent funding agencies. We also gratefully acknowledge
that these subjects tended to have more spontaneous speech Steven Tepper for software development.
effects, such as verbal deletions, word fragments, lengthen-
ings and filled pauses. Overall, spontaneous speech effects
occurred in 15% of the 232 utterances for the instruction
group, compared with 10% for the 229 utterances for the
no-instruction group. Although these baseline rates are low,
they may nevertheless have contributed to poorer recogni-
tion rates (see Butzberger et al. [2]). They may also be
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ABSTRACT
We attempt to explain a decrease in recognition word error A second not contradictory hypothesis is that subjects were

rate observed when users interacted over time with a spoken changing their speech style over time to better match the sys-
language system. We found no change in the language used tem's acoustic models. We coded and measured one speech
(as measured by sentence perplexity), and only a small style, hyperarticulation, which we had reason to believe would
decrease in the number of out-of-vocabulary words. However, lead to recognition errors. If hyperarticulation was related to
a behavior adversely affecting recognition, hyperarticulation, errors, and if the frequency of hyperarticulation decreased in
decreased over time. In addition, the acoustic match of hyper- Scenario 2, we could conclude that subjects' behavior
articulated utterances to the system models also improved changed in a way that adapted to the acoustic models of the
over time. We conclude that improvement in recognition was system.
due to changes in speech rather than in language. II. METHOD

I. INTRODUCTION 2.1. Subjects
Changes in the way users speak as they interact with a spo- We collected speech and session logs for two scenarios

ken language system over time may have consequences for from each of 24 subjects, counterbalancing for the selection
recognition performance. Because humans are highly adap- and order of the scenarios they solved. The majority of sub-
tive, initial recognition performance may not accurately pre- jects (17) were SRI employees recruited from an advertise-
dict later performance. System developers can benefit from mect (7 were S empleesmrecruited f ro an udertsconsderng n t o ly iiti l us of a sy tem butals exp ri- menit in an internal newsletter;, a small number were students
considering not only initial use of a system, but also experi- from a nearby university or members of a volunteer organiza-
ence of a user over time. In addition, speakers interacting with tion. Subjects were native speakers of English, ranged in age
a spoken language system may not exhibit the same language from 22 to 71, and had varying degrees of experience with
behavior observed in training data. Earlier, we found that rec- troe planning and hadpuars.
ognition errors decreased as subjects interacted with the Sys- travel planning and computers.
tern over time [I]; the current paper more closely examines the 2.2. Materials
source of this error reduction by looking at both the language Four different travel-planning scenarios were used. One
and speech style of users. involved arranging flights to two cities in three days; a second

Analyses were based on data collected using SRI's spoken involved finding two fares for the price of a first class fare; a
language system (SLS), as part of a multisite collection effort third required coordinating the arrival times of three flights
[21 in which subjects solved air-travel planning scenarios. The from different cities; and a fourth involved weighing factors
SRI SLS combines the DECIPHERTM recognizer 131 with a such as fares and meals in order to choose between two flight
robust natural-language understanding component [4], imple- times. Because the task demands of the scenarios were differ-
mented in the air-travel planning domain. The system does not ent, we controlled for scenario in the analyses.
prompt the user for specific input; it simply accepts user-for-
mulated queries. For example, the user might ask, "Show me 2.3. Apparatus
flights from San Francisco to Philadelphia during the morn- The data were collected using SRI's Spoken Language
ing," to which the system should respond by displaying a table System with no human in the loop. The basic characteristics of
of flight information fitting those specifications. the DECIPHERTM speech recognition component are

In a previous paper [1] we reported that subject's word described in Murveit et al. [5,6], and the basic characteristics
error rates decreased from Scenario 1 to Scenario 2. In that of the natural language understanding component are
analysis we attempted to explain the source of this decrease; described in Jackson et al. [41. The subjects used the real-time
however, the addition of data in the current paper allows us to hardware version of the DECIPHERTM system which had a
explain the phenomenon in further detail. We examine two vocabulary size of 1,250 words [3,71.
potential causes for the decrease in error: changes in language SRI's SLS technology was implemented in the air travel
and changes in speech style. planning domain, with which many people are familiar (see

One possible explanation for the decrease in error is that Price, 18]). The underlying database was a relational version
users were changing their language to use more constructions of an I I-city subset of the Official Airline Guide. Recognition
of the types most easily recognized by the system. To test this was based on the input of a Sennheiser HWM close-talking
hypothesis, we compared the perplexity of sentences in Sce- microphone.
narios I and 2 for each subject. If perplexity (essentially a The interface presented the user with a screen showing a
measure of how unexpected a word sequence is given the sys- button labeled "Click Here to Talk." A mouse click in this box
tern models) decreased in Scenario 2, we could conclude that caused the system to capture speech starting a 112 second
subjects' behavior changed in a way that adapted to the lan- before the click: the system automatically determined when
guagc models of the system.
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the speaker finished speaking based on silence duration set at a In an attempt to find converging evidence that changes in
threshold of 2 seconds. Once the speech was processed, the perplexity did not cause the decreased error rates, we obtained
screen displayed the words recognized, a "paraphrase" of the recognition results for the same sound files using a software
system's understanding of the request, and, where appropriate, version of the recogniz.r and two types of models. The bigram
a formatted table of data containing the answer to the query. models were essentially the same as the original models used
When the natural-language cot iponent could not arrive at a by the hardware, and were used as a control. The nogramr
reasonable answer, a message window appeared displaying models used only acoustic and word fiquency information
one of a small number of error messages. A log file was auto- for recognition; they did not reflect any information about
mnatically created, containing time stamps markcing each action cross-word probabilities. Thus the recognition results from
by the user and by the system. nogram models would not be improved by any user adaptation

2.4. Procedure to the grammar of the original recognizer, whereas the results
from the bigram models would. If the bigram results showed a

Subjects were seated in a quiet room and were given a greatw decrease in word error than the nogram results, we
short demonstration on how to use the system. Half of the sub- couli ,.oaclude that some of the decrease was due to adapta-
jects were given additional instructions explaining that, while tion to the language models. Figure 1 shows the word error
they might have a tendency to enunciate more clearly in the recognition results from the two types of models. Both bigram
face of recognition errors, they should nty to speak naturally, and nogram results show essentially the same decreasing
since the system was not trained on overenunciated or sepa- slope. This again suggests that adaptation to the language
rated speech. Once subjects were comfortable with the system, models was not a major cause of improved recognition over
tv .y were left alone in the room to solve the scenarios, time.

Ill. ADAPTATION 0.8
We compared Scenarios 1 and 2 for each subject to deter- S NOGRAM

mine whether there were any changes in user behavior over 0.7 0 BIGRAM
time. Although subjects were not told to solve the scenarios as

quickly as possible, they nevertheless took less time (10.5 w 0.6
compared to 13.0 minutes) to complete the second scenarios. <
F(1.23) = 5.78, p < .05. This difference was partially attribut- : 0.5
able to a lower number of total utterances in Scenario 2. In tr
addition, we found significantly lower recognition error rates n- 0.4
in subjects' second scenario. The mean word error rate was w

20.4% for Scenario 1, but fell to 16.1% for Scenario 2. o 0.3

F(1,22) = 5.60, p < .05.
0

3.1. Language 02
We first hypothesized that this change in error rates might __

be due in part to adaptation to the language model of the ree- 0.1
ognizer. As a measure of deviation from the system's bigram
language models, we used testset perplexity, which was based 0.0
on the bigram probabilities of the observed word sequences. SCENARIO 1 SCENARIO 2
Perplexity measures the average likelihood (according to the *4",n,
system's models) that each word in a user's query will be fol-
lowed by the next word, taking into account the base rate fre- Fig. 1 - Bigram and nogram word error rates over time
quencies of the words. So a commonly phrased query like "I'd We also ex2mined whether the subjects tended to reduce
like to flv from San Francisco to Philadelphia" would have a their use of out-of-vocabulary words in Scenario 2. Subjects
!ow perplexity, since the system models would predict that averaged 1.2 (less than 0.01%) out-of-vocabulary w'ords in
each word is quite likely to follow the word that precedes it. Seai ,a oprdwt . as esta .1)iWe confirmed the relationship between perplexity and Scenario 1, as compared with 0.5 (also less than 0.01%) in

We cnfimed he elatonsip etwen prpleityand Scenario 2. Ile number of these occurrences is so small as to
word error in our data; there was a significant, positive aver- Senario 2.rthenmber theseo r is s ogsmall as tbe trivial; furthermore, the trend is nonsignificant, F(1.21) =
age correlation between utterance word error and utterance 1.74, p >.10. This suggests that the use of fewer out-of-vocab-
perplexity, mean r = .28, t = 4.55, p < .001. Thus one way for ulary words had te if any effect on overall recognition rates.
subjects to improve recognition accuracy would be to change
their language to conform to the language models of the sys- 3.2. Speech Style
tem. For example, subjects might alter their initial language to Having found no evidence for adaptation to the language
use more common, easily recognized word sequences and to models, we concluded that recognition improvement must be
avoid rarer sequences that might tend to have more errors. due to changes in user speech style. That is, as speakers
However, we did not find support for this hypothesis. Perplex- became more familiar with the system, they learned to speak
ity decreased only slightly from 1 to 2 Scenario. with a geo- in ways that better matched the acoustics of the training data.
metric mean of 17.7 and 16.9, respectively. The magnitude of In human-human interaction, when an addressee (such as a
this difference was not significant given the variability both foreigner) has difficulty understanding, speakers change their
within and across subjects; perplexity within a scenario ranged speech style to enunciate more clearly than usual 19]. We pre-
from 8.8 to 38.9. The difference was nonsignificant by a Sign dicted that a similar effect might occur for people speaking to
test, p > .50. a machine with less than perfect understanding. We noticed
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that, when using an SLS as opposed to a wizard-mediated sys-
tem [10], subjects tended to hyperarticulate: releasing stops, NR
emphasizing initial word segments, pausing between words, 80 PARNOT HYPERARTICULATE
and inrewaing 'ocal effort. Since imst of the data used to PARTIALLY HYPERAFTICULATE
train the DECIPHERTM recognizer came from wizard-medi- CP
ated data collection, where recognition perforianmce was uJ
nearly perfect, examples of "frustrated" speech were rar,•. For 0Zthis reason, we predicted that hyperarticulation would impair < 60
recognition performance, and that perhaps the lower error ,,
rates in Scenario 2 might be due to a decrease in the frequency .-
of hyperarticulation.

Although hyperarticulation is a multifaceted behavior, it-J
was nevertheless possible t, make global judgments about . 40
individual utterances. Hyperirticulation was coded for each 0
utterance on a three-point scale by listening to the utterances. z
Utterances were coded as (1) clearly natural-sounding. o
(2) hyperarticulated in portions, or (3) hyperaruiculated 'tLU 20throughout the utterance. The coding was done blindly with- a.
out reference to session context or recognition outcome.

Using a within-subjects design, so that any differences in
recognition performance could be attributed to a change in
speech style, rather than speaker efLts, we analyzed the 0
speech style for Scenarios I and 2 of the same 24 subjects. SCENARIO1 SCENARIO 2
Because not enough speakers had utterances in all three cate- *ý_#
gories, we combined the hyperarticulation coding of two lev-
els for statistical purposes. For the 21 subjects who had both Fig. 2- Frequency of hyperartculate utteranes over time
natural and hyperarticulate utterances, we compared recogni- decrease in the rate of hyperarticulation may account for some
Jion performance within subjects and found that the hyperar- or much of the decrease in error over time.
ticulate utterances resulted in substantially higher word error In addition to frequency of hyperarticulation, it is possible
rates, 0.25 as compared with 0.14, F(1,20) = 15.68, p < .001. that the nature or degree of hyperarticulation may have

Given that hyperarticulauon leads to more errors, it is pos- changed over time. If hyperarticulated utterances themselves
sible that the overall decrease in error rates is due to a decrease became more like the training data over time, this improved
in ti.e rate of hyperarticulition. In fact, the frequency of hyper- match might also have contributed to the reduction in error
articulated utterances decreased from an average of 46% of rate. Nonhyperarticulated utterances might also have become
uterancs to 30% from 1 to Scenario 2, F(1,23) = 4.97, p < more similar to the training data. We measured the acoustic
.05. The decrease was more pronounced for the completely match between the utterances and the training data by running
hyperarticulate utterances than for the partially hyperarticu- a forced alignment recognizer on the recorded sentences. Hid-
late. As shown in Figure 2. users tended to use proportionally den Markov models associated with the sentence transcrip-
fewer completely hyperarticulate utterances in Scenario 2. dons were aligned to the VQ sequence produced by each
Since this indicates a trend toward fewer hyperarticulated sentence sound file. This procedure obtained the probability of
words within utterances, this finding may also help explain the each sentence's VQ sequence given the hidden Markov mod-
decrease in error rate. els it was aligned to.

Converging evidence for the effect of frequency of hyper- Figure 4 shows log probabilities for hyperarticulated and
articulation on overall recognition rates came from the experi- nonhyperarticulated utterances in both scenarios. While the
mental manipulation of instructions. Of our 24 subjects, 12 acoustic match for nonhyperarticulated utterances did not
had been given instructions not to "overenunciate." Under change over time, the match for hyperarticulated utterances
these instructions, subjzcts hype".rticulated less, on 4.3 or improved sharply from the Scenariol to Scenario 2. Because
28.0% of all utterances as compared with 7.5 or 52.5%. This few subjects had utterances in all four catego-'es (both hyper-
effect was reliable, F(1,22) = 5.00, p < .05. Since hyperarticu- articulated and nonhyperarticulated, in both scenarios), statis-
lation rates decreased with instructions, we expected a compa- tical tests were inappropriate. However. we observe( a similar
rable decrease i. :rror rates. We compared word error rates for imprcvement in acoustic match for hyperarticulated utterances
the two instruction groups and found that the subjects who for both instruction groups, suggesting that the trend is not
received the instructions tended to have lower wort -.rror rates random. Thus, an additional factor contributing to lower rec-
overall 0.15, as compared with 0.20; however, this effect was ognition error rates is a change in the acoustic narare of hyper-
not significant. As Figure 3 shows, there was no interaction articulated utterances over time
between instructions and session; both the instruction and no-
instruction groups had similar decreases in word error rate
over time. Figure 3 also -:Nows the comparable ra'es of hyper- Wc found that recognition word error rates decreased as
aruculation. As with error rate, there was no significant inter- users interacted with the same Si S over time. We found that
action between instructions rt.- hyperarticulation rate. Thus a this effect was due to changes in speech style rather than in
decrease in hyperarticulation was associated with a decrease ada- -'on to the language models of the system. We conclude
in word error both when observed over time and when manip- th .changes in one speech style, hyperarticulation, affect rec-
ulated by subject instructions. This finding suggests that a ogni:ion rates in two ways. Users both decrease the rate of
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